Блог им. student_vrt
Оригинал опубликован на blog.dti.team
Читать предыдущее исследование: Интернет вещей
В работе Oxford Martin School 2013 года говорилось о том, что 47% всех
рабочих мест может быть автоматизировано в течение следующих 20 лет. Основным драйвером этого процесса является применение искусственного интеллекта, работающего с большими данными, как более эффективной замены человеку.
Машины теперь способны решать все больше процессов, за которые раньше отвечали люди. Кроме того, делают это качественнее и во многих случаях дешевле. О том, что это значит для рынка труда, в июле этого года говорил Герман Греф, выступая перед студентами Балтийского федерального университета им. Канта:
“Мы перестаём брать на работу юристов, которые не знают, что делать с нейронной сетью. <...> Вы — студенты вчерашнего дня. Товарищи юристы, забудьте свою профессию. В прошлом году 450 юристов, которые у нас готовят иски, ушли в прошлое, были сокращены. У нас нейронная сетка готовит исковые заявления лучше, чем юристы, подготовленные Балтийским федеральным университетом. Их мы на работу точно не возьмем.”
Продолжая освещать #технобудущее, команда DTI подготовила все, что необходимо знать для первого погружения в нейронные сети: как они устроены, почему все больше компаний предпочитают нейросети живым сотрудникам и какой потенциал по оптимизации различных процессов несет эта технология.
Нейронная сеть – один из способов реализации искусственного интеллекта (ИИ).
В разработке ИИ существует обширная область - машинное обучение. Она изучает методы построения алгоритмов, способных самостоятельно обучаться. Это необходимо, если не существует четкого решения какой-либо задачи. В этом случае проще не искать правильное решение, а создать механизм, который сам придумает метод для его поиска.
#справка Во многих статьях можно встретить термин «глубокое» — или «глубинное» — обучение. Под ним понимают алгоритмы машинного обучения, использующие много вычислительных ресурсов. В большинстве случаев под ним можно понимать просто “нейронные сети”.
Чтобы не запутаться в понятиях «искусственный интеллект», «машинное обучение» и «глубокое обучение», предлагаем посмотреть на визуализацию их развития:
#интересное Существует два типа искусственного интеллекта (ИИ): слабый (узконаправленный) и сильный (общий). Слабый ИИ предназначен для выполнения узкого списка задач. Такими являются голосовые помощники Siri и Google Assistant и все остальные примеры, которые мы приводим в этой статье. Сильный ИИ, в свою очередь, способен выполнить любую человеческую задачу. На данный момент реализация сильного ИИ невозможна, он является утопической идеей.
Нейросеть моделирует работу человеческой нервной системы, особенностью которой является способность к самообучению с учетом предыдущего опыта. Таким образом, с каждым разом система совершает все меньше ошибок.
Как и наша нервная система, нейросеть состоит из отдельных вычислительных элементов – нейронов, расположенных на нескольких слоях. Данные, поступающие на вход нейросети, проходят последовательную обработку на каждом слое сети. При этом каждый нейрон имеет определенные параметры, которые могут изменяться в зависимости от полученных результатов – в этом и заключается обучение сети.
Предположим, что задача нейросети – отличать кошек от собак. Для настройки нейронной сети подается большой массив подписанных изображений кошек и собак. Нейросеть анализирует признаки (в том числе линии, формы, их размер и цвет) на этих картинках и строит такую распознавательную модель, которая минимизирует процент ошибок относительно эталонных результатов.
На рисунке ниже представлен процесс работы нейросети, задача которой — распознать цифру почтового индекса, написанную от руки.
Несмотря на то, что нейросети попали в центр всеобщего внимания совсем недавно, это один из старейших алгоритмов машинного обучения. Первая версия формального нейрона, ячейки нейронной сети, была предложена Уорреном Маккалоком и Уолтером Питтсом в 1943 году.
А уже в 1958 году Фрэнк Розенблатт разработал первую нейронную сеть. Несмотря на свою простоту, она уже могла различать, например, объекты в двухмерном пространстве.
Mark I Perceptron — машина Розенблатта
Первые успехи привлекли повышенное внимание к технологии, однако затем другие алгоритмы машинного обучения стали показывать лучшие результаты, и нейросети отошли на второй план. Следующая волна интереса пришлась на 1990-е годы, после чего о нейросетях почти не было слышно до 2010 года.
До 2010 года попросту не существовало базы данных, достаточно большой для того, чтобы качественно обучить нейросети решать определенные задачи, в основном связанные с распознаванием и классификацией изображений. Поэтому нейросети довольно часто ошибались: путали кошку с собакой, или, что еще хуже, снимок здорового органа со снимком органа, пораженного опухолью.
Но в 2010 году появилась база ImageNet, содержащая 15 миллионов изображений в 22 тысячах категорий. ImageNet многократно превышала объем существовавших баз данных изображений и была доступна для любого исследователя. С такими объемами данных нейросети можно было учить принимать практически безошибочные решения.
Размер ImageNet в сравнении с другими существовавшими в 2010 году базами изображений
До этого на пути развития нейросетей стояла другая, не менее существенная, проблема: традиционный метод обучения был неэффективен. Несмотря на то что важную роль играет число слоев в нейронной сети, важен также и метод обучения сети. Использовавшийся ранее метод обратного шифрования мог эффективно обучать только последние слои сети. Процесс обучения оказывался слишком длительным для практического применения, а скрытые слои глубинных нейросетей не функционировали должным образом.
Результатов в решении этой проблемы в 2006 году добились три независимых группы ученых. Во-первых, Джеффри Хинтон реализовал предобучение сети при помощи машины Больцмана, обучая каждый слой отдельно. Во-вторых, Ян ЛеКан предложил использование сверточной нейронной сети для решения проблем распознавания изображений. Наконец, Иошуа Бенджио разработал каскадный автокодировщик, позволивший задействовать все слои в глубокой нейронной сети.
Команда исследователей из Ноттингемского университета разработала четыре алгоритма машинного обучения для оценки степени риска сердечно-сосудистых заболеваний пациентов. Для обучения использовались данные 378 тыс. британских пациентов. Обученный искусственный интеллект определял риск кардиологических заболеваний эффективнее реальных врачей. Точность алгоритма — между 74 и 76,4 процентами (стандартная система из восьми факторов, разработанная Американской коллегией кардиологии, обеспечивает точность лишь в 72,8%)
Японская страховая компания Fukoku Mutual Life Insurance заключила контракт с IBM. Согласно нему, 34 сотрудников японской компании заменит система IBM Watson Explorer AI. Нейросеть будет просматривать десятки тысяч медицинских сертификатов и учитывать число посещений госпиталей, перенесенные операции и другие факторы для определения условий страхования клиентов. В Fukoku Mutual Life Insurance уверены, что использование IBM Watson повысит продуктивность на 30% и окупится за два года.
Машинное обучение помогает распознавать потенциальные случаи мошенничества в различных сферах жизни. Подобный инструмент использует, например, PayPal – в рамках борьбы с отмыванием денег компания сравнивает миллионы транзакций и обнаруживает среди них подозрительные. В результате, мошеннические транзакции в PayPal составляют рекордно низкие 0,32%, тогда как стандарт в финансовом секторе — 1,32%.
Продолжение аналитической записки доступно по ссылке: blog.dti.team
Потому что это слово пошло в массы, и маркетологи пытаются заработать
Откуда же она вдруг появилась, такая большая, lol?
Пользователь разрешил комментарии только друзьям.