Вам дали 10000 числовых рядов формата (календарная дата; число) и предложили рассортировать их пополам на «похожие на (цены) американские акции» и непохожие. Или, скажем, «более похожие» и «менее похожие». Как вы будете это делать?
1. Нужно выработать меру похожести.
2. Вычислить меру похожести для каждого из рядов.
3. Рассортировать.
Самое сложное/интересное, конечно, в первом пункте. Тут вся загвоздка: «похожесть» это абстракция, кто как её формализовал, тот так и понимает. Так что тот кто «заказывает» сортировку тот и должен предоставить формализацию ну или хотя бы что больше конкретики про понятие «похожие».
Replikant_mih, Естественно, речь о «мере похожести», только задачка в том и состоит, чтобы вы её сформулировали. Если бы она была предоставлена «заказчиком», то вообще никакой задачки бы не было: вычислить и рассортировать это вообще не задачка.
Ivan FXS, Ну, например, я возьму российские акции, посчитаю среднюю цену по ним в среднем по рядам, сделаю то же по американским. Например, американская средняя будет ниже, я посчитаю мерой похожести близость средней цены ряда к нулю. И буду прав для этого критерия похожести. Но вас же такой вариант не устроит. Но я же не знаю, что у вас за «похожесть» в голове. Ну или не знаю, как вы эту похожесть планируете использовать, тогда бы меру похожести я бы вырабатывал под критерий целей дальнейшего использования — тоже совсем другое дело.
Replikant_mih, «возьму… акции, посчитаю среднюю цену по ним в среднем по рядам» — получите для каждой акции некое число, все числа будут разными… и что это дает?
«как вы эту похожесть планируете использовать» — хочу разделить ценовые ряды реальных американских акций на такие, которые ведут себя «нормально», и такие, которые ведут себя «не нормально».
хочу разделить ценовые ряды реальных американских акций на такие, которые ведут себя «нормально», и такие, которые ведут себя «не нормально».
Вот, идея-то здравая! Были у меня у самого подобные мысли. Я так чисто сначала докопался, сорри). Ну как по мне не хватило условий в задаче для её решения). Терь хватает).
Если теперь по существу: Ну тут много нюансов. Дальше что-то типа мозгового штурма:
Думаю, «нормально» может быть не одно. Думаю, возможно несколько точек притяжения и, думаю, так правильнее будет делать. Можно придумать какие-то метрики, характеризующие ценовой ряд (причем не за всю историю, а на некотом участке, т.е. по факту это акция в некотором состоянии, которое можно разложить на «характер» акции + примесь каких-то внешних факторов), дальше можно попробовать кластеризовать с помощью ML. Если модель сможет вычленить точки притяжения (кластеры), дальше уже будет и мера похожести — по факту расстояние до центра кластера. Дальше надо смотреть, экспериментировать. Смотреть как меняется в динамике эта мера, может там какие-то паттерны в этом. Дальше можно разные типы стратегий для разных кластеров смотреть — где какая лучше ложится. И т.д., дальше сложнее фантазировать, потому что всё туманней становится, дальше нужно фантзировать уже по ходу исследований).
Минфин США объявил о чрезвычайных мерах против дефолта через три дня
Период действия чрезвычайных мер сложно спрогнозировать, он может начать 21 января, если не принять срочных решений, рассказал...
Климова стремилась получить участок земли оборонного назначения в ближнем Подмосковье, чтобы организовать на нем дачное некоммерческое партнерство (ДНП) для ветеранов военной службы, подходящий участо...
24
Госкорпорация «Росатом» сообщает, что 17 января 2025 г. Высоким судом правосудия Англии и Уэльса (Лондон) было вынесено решение об отказе в рассмотрении иска З.Г. Магомедова и ряда подконтроль...
Efan, Смотрите, по 24 году вероятно капитал будет итоговый около 200. По стратегии банка консервативно ROE 20+, значит заработать хотят 46+. За пол года 23, получаем 223 капитал, если акций останет...
Arctic Blast Повышает Форвардные цены На Природный газ
ся:
Фьючерсные цены на природный газ выросли в период с 9 по 15 января, поскольку ожидалось, что на следующей неделе полярный вихрь значитель...
2. Вычислить меру похожести для каждого из рядов.
3. Рассортировать.
Самое сложное/интересное, конечно, в первом пункте. Тут вся загвоздка: «похожесть» это абстракция, кто как её формализовал, тот так и понимает. Так что тот кто «заказывает» сортировку тот и должен предоставить формализацию ну или хотя бы что больше конкретики про понятие «похожие».
«как вы эту похожесть планируете использовать» — хочу разделить ценовые ряды реальных американских акций на такие, которые ведут себя «нормально», и такие, которые ведут себя «не нормально».
Вот, идея-то здравая! Были у меня у самого подобные мысли. Я так чисто сначала докопался, сорри). Ну как по мне не хватило условий в задаче для её решения). Терь хватает).
Если теперь по существу: Ну тут много нюансов. Дальше что-то типа мозгового штурма:
Думаю, «нормально» может быть не одно. Думаю, возможно несколько точек притяжения и, думаю, так правильнее будет делать. Можно придумать какие-то метрики, характеризующие ценовой ряд (причем не за всю историю, а на некотом участке, т.е. по факту это акция в некотором состоянии, которое можно разложить на «характер» акции + примесь каких-то внешних факторов), дальше можно попробовать кластеризовать с помощью ML. Если модель сможет вычленить точки притяжения (кластеры), дальше уже будет и мера похожести — по факту расстояние до центра кластера. Дальше надо смотреть, экспериментировать. Смотреть как меняется в динамике эта мера, может там какие-то паттерны в этом. Дальше можно разные типы стратегий для разных кластеров смотреть — где какая лучше ложится. И т.д., дальше сложнее фантазировать, потому что всё туманней становится, дальше нужно фантзировать уже по ходу исследований).