Когда строишь портфель, всегда интересно посмотреть, какие у него получаются показатели. Самой известной методикой, несомненно, можно считать — подход Марковица. Она прекрасна описана во многих учебниках, и по ней существует масса программ, которые позволяют легко посчитать параметры портфеля. Большинство текущих робоэдвайзеров построены именно на этом подходе. Остается только вопрос, какие активы «подпихнуть» машине, и какие ограничения выставить при оптимизации.
Основной проблемой при работе с Марковцем является нестабильность во времени показателей волатильности, ожидаемой доходности и корреляций. Всегда встает вопрос, сколько необходимо взять значений для расчетов, за какой период и т.п. Модель очень чувствительна к этим вводным, и результаты могут быть очень различны.
Если посмотреть на pic.1, где по оси Х отложена волатильность, а по оси Y — ожидаемая доходность, то каждая точка будет соответствовать одному году для индексов MCFTR, RGBITR и портфеля МСFTR/RGBITR c распределением 50/50. На нем очень хорошо виден разборс значений от года к году. Математическая статистика нас учит тому, что необходимо брать как можно больше значений, и тем самым мы получим более точные оценки ожидаемой доходности, и волатильности. Но все это может неплохо работать на очень длительных горизонтах. По-моему опыту – в лучшем случае лет 15, а так около 25. Но что, если наш горизонт короче?