В этой статье мы рассмотрим, как правильно работать с историей цен в связке PostgreSQL и Python. Разберём, как хранить цены и ускорить их получение в Python.
Дополнительно приложен блокнот на IPython с исходным кодом и измерениями.
При переходе на Python я был вдохновлен удобством языка и огромным количеством готовых пакетов. Писать было легко и удобно, а работало все быстро. Но всё омрачало катастрофически медленное получение большого массива цен из базы данных (БД) в Python.
В статье показаны примеры для PostgreSQL, но материал будет полезен для любой БД, включая MySQL, при работе в связке с Python.
Мы будем работать с пакетами psycopg2 и numpy.
Этой статьей мы продолжим улучшать результы автоматического поиска пар для торговли. Дополнительным фильтром будем использовать измерения, доступные после построения регрессии методом statsmodels.api.OLS(). Этот же фильтр будем применять к парам во время торговли.
Найденные пары проверим в Quantopian, а исходный код напишем на Python.
При торговле по стратегии «Парного трейдинга» часто встречаются пары, где цены каждого актива сильно отличаются друг от друга. Для получения лучшей доходности и сокращения риска необходимо правильно определить размер сделки по каждому активу.
Сегодня мы рассмотрим расчет дельты позиций используя метод наименьших квадратов (МНК).
Тестировать будем в Quantopian, а код пишем на Python.
В прошлый раз мы проверили трендовую природу индикатора RSI. Нами были получены интересные результаты, особенно при торговле основными секторами. В этот раз мы продолжим двигаться в направлении изменения индикатора RSI, но будем использовать сигнал разворота тенденции.
Рассмотрим пересечение индикаторов RSI разных периодов. Алгоритмы пишем в Quantopian на Python.
В этот раз:
В прошлый раз мы рассмотрели алгоритм торговли разворотов по сигналам RSI. В этой статье посмотрим, можно ли следовать в направлении движения RSI. Ведь индикатор показывает именно направление изменения цены. Алгоритмы пишем в Quantopian на Python.
В этот раз:
Настало время оптимизации алгоритма «Парного трейдинга». Прошлые наблюдения давали много ложных сигналов. Сократить их помогут скользящие средние. Мы построим z-оценку по спреду цен пары, сглаженному скользящими средними. Бэктестинг будем проводить в Quantopian, а весь код напишем на Python.
Рассмотрим разницу сигналов по z-оценке:
Торговля один раз в день, это хорошо для комиссий. Но не пропускаем ли мы колебания цен, на которых можно заработать? Для проверки уменьшим таймфреймы и увеличим частоту проверки сигналов.
Проверять будем на 15, 30 и 60 минутных периодах. Торговать будем ранее найденными парами. Все проверяем на Quantopian, а код пишем на Python.
В статье мы рассмотрим, как улучшить результаты автоматического поиска пар для стратегии «Парного трейдинга». А также выясним, как решить проблему, когда пара перестает работать и сразу начинает приносить убытки. Дополнительно, получим полноценный автоматический поиск, чтобы не приходилось отсматривать пары вручную.
Найденные пары проверим на дневной истории. А в следующий раз на часовой.
В этой статье мы проведем тестирование стратегии «Парного трейдинга» на платформе Quantopian. В тестах будут использованы пары, найденные с помощью автоматических алгоритмов, описанных в предыдущих статьях. Код будет написан на Python.
Это заключительная статья по автоматическому поиску пар для «Парного трейдинга» с помощью Python. Способ самый быстрый и самый эффективный. Хотя эффективность достигается уже благодаря анализу полученного набора пар.