Долго пытался применить ML к предсказанию дивидендов, но получить результат лучше, чем у совсем базовой гипотезы, что все акции имеют одинаковую дивидендную доходность, равную средней по всей выборке, не получалось. Но все-таки после долгих раздумий удалось сформировать подход, объясняющий около 20% дисперсии. Несколько методов ML дают близкий результат, поэтому остановлюсь на наиболее простом с точки зрения количества подбираемых гиперпараметров —
гребневой регрессии.
Ключевая задача на ближайшую перспективу переписать оптимизацию портфеля с учетом нового подхода к прогнозированию дивидендов.