Введение
Многие datascientists, желающие использовать ML на финансовых рынках, прочитали толстые книжки об инвестировании, может даже создавали модели с учетом прочитанного. И наверняка знают как правильно оценить полученные модели с точки зрения ML. Разобраться с этим необходимо, чтобы не было мучительно больно, когда прекрасная модель на бумаге, превращается в генератор убытков при практическом использовании. Однако оценка эффективности модели ML на бирже, довольно специфическая область, тонкости которой раскрываются только когда вы погружаетесь в процесс. Под процессом я понимаю трейдинг с частотой совершения сделок гораздо чаще «пара сделок в месяц, в течении полугода». Существует множество подводных камней, о наличии которых вы даже не подозреваете, пока смотрите на трейдинг извне. Я попробую вольно изложить свои мысли на данную тему, я покажу метрики, условно разбив их на 3 группы и обьясню их смысл, покажу свои любимые и о чем нужно подумать, если вы хотите практически использовать модели, а не повесить их на стеночку в красивой рамочке. Представлю метрики в табличном и графическом виде, показав их взаимосвязь. Сравню показатели моделей в виде «какую модель выбираю я» и «что выбираете вы» и кто тут больше ошибается. Для любителей кодов, приведу реализацию всего подсчитанного, так что можно сразу применить прочитанное для оценки своих моделей. Я не буду тут говорить о борьбе с переобучением или регуляризации или стратегиях кросвалидации — оставлю это на потом. Здесь мы начинаем со списка уже спрогнозированных сделок, с помощью transformer о которой я писал в прошлой статье. Поэтому данный текст будет его логическим продолжением, где я оценю модель с точки зрения ее практического использования.
Таки собрался дописать вторую часть своих результатов применения трансформеров для предсказания на российском фондовом рынке. Может и хорошо что не спешил, так как пафос первой части о трансформерах дающих какие то уникальные результаты по сравнению с другими архитектурами нейросетей, оказался несколько преувеличенным, по крайней мере LSTM дал вполне сравнимый результат с трансформерами. Потом я попробовал градиентный бустинг, дерево решений и вновь получил схожий результат. Так что подавайте в нейросеть правильные признаки и многие модели покажут положительный результат. Тем не менее, раз я начал с трансформерах, и так как их архитектура хорошо отражает рынкок, о них и продолжу.
Для любителей вопросов о «таймфреймах, на чем обучал, какие акции, что в качестве таргета, какие параметры, время удержании позиции» итп итд. Акции МосБиржы, из числа наиболее ликвидных. Данные у меня с 2011 до 2021 (и это увы необходимость, так как именно с 2011 года время работы биржи стало 9 часов). Прогнозы строил следующим образом — выкидывал один год (это out-sample), а из оставшихся делал разбивку на train и test. Таким образом получил 10 одногодичных прогнозов. Для меня важно получить доходность на сделку пусть поменьше, но чтобы прибыльность подтверждалась на как можно большем диапазоне, и на всех акциях. Такое чтобы для каждой акции своя модель — для меня неприемлемо. И само собой никаких убыточных годов, как минимум. Знаю многие меняют системы каждые 3 года и для них это нормально, я предпочитаю вылавливать аномалии которые работают десятилетиями. Тут я никого не учу, рынок сам рассудит.