Экспонента — показательная функция exp(x) = ex, где e — основание натуральных логарифмов (e = 2.7182818284590451...).
«e» — основание натурального логарифма, математическая константа, иррациональное и трансцендентное число. Приблизительно равно 2,71828. Иногда число e называют числом Эйлера или числом Непера. Обозначается строчной латинской буквой «e».
Константу впервые вычислил швейцарский математик Якоб Бернулли в ходе решения задачи о предельной величине процентного дохода. Он обнаружил, что если исходная сумма $1 и начисляется 100% годовых один раз в конце года, то итоговая сумма будет $2. Но если те же самые проценты начислять два раза в год, то $1 умножается на 1,5 дважды, получая $2,25 (т. е. 1$*50%=1,5$, затем 1,5$*50%=2,25$). Начисления процентов раз в квартал (4 раза в год, т. е. каждый квартал к новой полученной сумме прибавляем 25%) получаем $2,44140625, и так далее. Бернулли показал, что если частоту начисления процентов бесконечно увеличивать, то процентный доход в случае сложного процента будет равен числу 2,718.
Т. е. «е» — это максимально возможный прирост сложного процента за определённый период (например за год) при начислениях равных 100%.