Блог им. AleksandrBaryshnikov |Q-learning в алготрейдинге

    • 24 ноября 2023, 02:32
    • |
    • bascomo
  • Еще
Привет! Новая интересная тема в ночь, как я люблю, а так же ликбез для тех, кто хочет достичь больше большинства (и стать успешным меньшинством), и стремится к новым свершениям.

Размышляя и говоря о самообучающихся торговых системах, невозможно пройти мимо Machine Learning / Deep Learning (ML / DL), и это — пост, который посвящён этой теме.

Q-learning в алготрейдинге

О технологиях ИИ и областях их применения в алготрейдинге
Я бы разделил применение ML в трейдинге на три части:
  1. Классический ML, который представлен, например, библиотекой scikit-learn. Она позволяет обрабатывать данные статистически, а так же предоставляет простые модели классификации, кластеризации и регрессии. Функций этой библиотеки достаточно, чтобы несколькими строчками кода выявить наличие или отсутствие зависимостей/корреляций в данных, разбить данные на кластера и выполнить другие типовые задачи, в том числе, препроцессинг данных (предварительную обработку) — стандартизацию, нормализацию, очистку и т.п. Кроме того, её можно использовать для уменьшения размерности, что может пригодиться, например, для выявления значимых метрик торговых стратегий для дальнейшей фильтрации и отбора по существенным. И это только одна библиотека, а их теперь существует множество.


( Читать дальше )

Блог им. AleksandrBaryshnikov |Как я использую ML в оценке статистических метрик Equity

Идея

Думаю, что большинство трейдеров использует стандартные показатели оценки, встроенные в торговые терминалы. У меня возник вопрос доверия к ним, я решил проверить, насколько они релевантны. Дело в том, что просто так их использовать мне затруднительно, и сами по себе они ничего не говорят. Кроме того, в некоторых источниках, например, я читал, что коэффициент Шарпа показателен для анализа фактических сделок, но отнюдь не для анализа смоделированной на истории торговли. Не буду вдаваться в детали, это мнение можно найти в интернете, но закралось сомнение, а адекватными ли метриками вообще я пользуюсь при тестировании моих алгоритмов и стратегий. Моя идея состояла в том, что нужно рассматривать метрики в их корреляции друг с другом, для выявления зависимостей, с тем, чтобы улучшить результаты торговли, найдя лучшие кластеры пересечений этих показателей. Кроме того, чтобы просто это посчитать, мне нужно было ещё разбить полученные результаты на классы, что само по себе нетривиальная задача, если делать это вручную, потому что нужно определить границы для каждого класса, при том, что параметров, по которым те или иные алгоритмы должны попадать в тот или иной класс, несколько.

( Читать дальше )

....все тэги
UPDONW
Новый дизайн