Kot_Begemot

Читают

User-icon
185

Записи

52

Глобальные оценки инвестиций - стресс-тест и адекватная оценка риска (численный эксперимент).

     В задачах оценки бизнес проектов, прогнозирования спроса, определения справедливой цены опциона или портфельного инвестирования, так или иначе, возникает проблема адекватной оценки рисков.  Обычно за риск принимается простое, выборочное среднеквадратичное отклонение, для которого хорошо разработан аппарат математической статистики, позволяющий прогнозировать критические показатели, например просадки,  и проводить стресс-тесты в предположении центральной предельной теоремы, то есть в предположении узкой стационарности  наблюдаемых процессов.

     Однако, мы зачастую имеем дело с абсолютно  другими, нестационарными процессами. Не стационарность процесса может быть вызвана  как нелинейным синергетическим эффектом  (реклама и «сарафанное радио»,  мода, политические выборы, революции и пр. самоорганизации),  как множественностью состояний системы (тренд/флэт), так и просто  некоторой инерцией системы, связанной, например, с задержкой принятия решений основными игроками.



( Читать дальше )

Портфельная оптимизация как бустинг на «слабых» моделях

Часть 1.

Традиционно считается, что задача портфельной оптимизации, или задача Марковица, представляет собой некоторую самостоятельную задачу выбора такого портфеля активов, который обладал бы максимальной доходностью при минимальных рисках.

Прим. В качестве актива могут выступать ценные бумаги (акции), их производные (опционы)  или торговые системы.

 

Решение задачи состоит из двух этапов:

  1. Прогноз доходности и ковариации активов в будущих периодах – то есть построение некоторого набора «слабых» прогностических моделей.
  2. Составление оптимального портфеля в соответствии с некоторой целевой функцией, и ранее полученными оценками. То есть построение такой композиции «слабых» моделей, которая обладала бы наибольшей прогностической силой.

 

Почему мы используем аналогию портфельной оптимизации с методами машинного обучения  — Bag, Boost?! Потому что в действительности (и мы это продемонстрируем) нам абсолютно не важно, насколько хорошо динамику наших временных рядов прогнозируют «слабые» модели – нам важно только то, чтобы ошибки прогнозов наших моделей взаимно компенсировали бы друг друга в некотором интегральном смысле. Иными словами – в случае бустинга – ошибка прогноза линейной композиции была бы минимальной, а в случае портфельной оптимизации –  была бы минимальной ошибка прогноза нелинейной композиции (то есть самого портфеля).



( Читать дальше )

теги блога Kot_Begemot

....все тэги



UPDONW
Новый дизайн