Воодушевлённый статьёй с рекламой структурных продуктов на Хабре, адаптировал python-скрипт для их самостоятельного тестирования. Основная идея в том, что подобные продукты предлагают 100% защиту капитала. А учитывая 10 лет бычьего рынка, исторические показатели подобных продуктов одурманивают безрисковым раем.
Скрипт подойдёт для быстрого и понятного тестирования своих портфелей с ребалансировкой в разные периоды. Ну а кому-то данный инструмент может пригодиться для самостоятельного построения подобных стратегий. Их наипростейшей формы. Однако брокеры пишут, что это не каждому под силу.
Код выложен в GitHub в виде Jupyter-блокнота. Поехали!
В этой статье рассмотрим простейшую маркет-нейтральную стратегию из производных инструментов на индекса страха для S&P 500 (VIX). В основу положим контанго фьючерсов на VIX. Будем опережать SPY.
Использовать будем ETF на фьючерсы разных сроков. Всё это мы приготовим в Quantopian. Поехали!
Данный алгоритм появился из стороннего примера, найденного на Quantopian. Я его оптимизировал и сопроводил обильными комментариями на русском. Это не лучшее использование воронок (Pipeline). Но зато использует произвольные факторы (CustomFactor).
Всё это появилось по просьбе автора MindSpace.ru, Оксаны Гафаити. Поехали!
Ни для кого не секрет, что рынок криптовалют обладает феноменальной волатильностью, по причине своей молодости и отсутствию регулирования. На регулируемых рынках в борьбе с волатильностью помогает портфель, представляющий собой набор активов с периодической ребалансировкой.
Поможет ли портфель на рынке криптовалют? И позволит ли он сохранить и приумножить биткойн (BTC)? Мы в команде решили это проверить. Одним из условий создания портфеля была простота его поддержания. Подбор и поиск активов мы проводили с помощью Jupyter на Python. Разбору кода мы посвятим отдельную статью. А в этот раз рассмотрим, какие портфели нам удалось получить.
Анализ и поиск возможностей будем осуществлять за последний год, начиная с августа 2017 года. За этот короткий период были резкие взлёты монет, сопровождаемые не менее быстрыми падениями.
В продолжение статьи о вреде избыточной диверсификации создадим полезный инструментарий️ по подбору акций. После этого сделаем простую ребалансировку⚖️ и добавим уникальные условия технических индикаторов, которых так часто не хватает в популярных сервисах. А затем сравним доходность отдельных активов и различных портфелей.
Во всем этом задействуем Pandas и минимизируем количество циклов. Погруппируем времянные ряды и порисуем графиков. Познакомимся с мультииндексами и их поведением. И всё это в Jupyter на Python 3.6.
У. Баффет завещал жене после своей смерти️ вложить все средства в биржевой фонд ETF на S&P 500 (VOO) и жить в своё удовольствие️. Однако книги, интернет и финконсультанты призывают нас составлять диверсифицированные портфели с обязательным включением в них облигаций. К слову, о диверсификации Баффет тоже отзывается не лестно и призывает все яйца хранить в одной корзине, просто внимательно за ней присматривать.
В данной статье мы попробуем разобраться, стоит ли верить оракулу из Омахи или прислушаться к финансовым консультантам. А поможет нам в этом Python и Quantopian.
В этот раз повторим на Python индикатор KST (Know Sure Thing), созданный Мартином Прингом. Если вы подписаны на StockCharts.com, то вы получаете платную рассылку обзоров рынка от Джона Мэрфи и Мартина Принга. Принг в своих анализах постоянно ссылается на свой индикатор KST. И у него всегда всё складно и точно совпадает.
Я же в бессонных поисках граалей решил повторить индикатор KST и провести коротенький анализ за предыдущие 14 лет.
Разбил много ☕кружек в поисках решения для ️быстрого получения длинных историй цен для большого количества активов в Python. Ещё имел смелость желать работать с ценами в numpy-массивах, а лучше сразу в pandas.
Стандартные подходы в лоб работали разочаровывающе, что приводило к выполнению запроса к БД в течение 30 секунд и более. Не желая мириться, я нашёл несколько решений, которые полностью меня удовлетворили.
В этот раз будем тестировать стратегию разворотов по сигналам 3-х-дневного индикатора RSI. Начнем с проведения анализа пересечения границ перепроданности/перекупленности методом, описанным в предыдущей статье.
Анализ и тесты будем проводить на Python, используем библиотеку Zipline и Quantopian.
При бэктестингах индикатора RSI заметил разное поведение на разных активах. На некоторых активах сигналы перекупленности и перепроданности по RSI за короткий период (2-5 дней) работают одинаково хорошо в обе стороны, а иногда преобладает только один сигнал. На крупных индексах за последние 10 лет лучше работает сигнал перепроданности⤴.
При поиске ответа на «Почему?» удалось найти решение для определения оптимального периода RSI и лучших порогов. Итак, проанализируем это вместе на Python.