Избранное трейдера Andrey
MetaTrader 5 позволяет разрабатывать и тестировать роботов, торгующих одновременно на нескольких инструментах.
Встроенный в платформу тестер стратегий автоматически скачивает с торгового сервера брокера тиковую историю и учитывает спецификацию контрактов — разработчику ничего не нужно делать руками.
Это позволяет легко и максимально достоверно воспроизводить все условия торгового окружения — вплоть до миллисекундных интервалов между поступлениями тиков на разных символах.
Сейчас мы покажем, как провести разработку и тестирование спредовой стратегии на двух фьючерсах Московской биржи.
На Московской бирже торгуются фьючерсы вида Si-M.Y и RTS-M.Y, которые достаточно тесно между собой связаны. Здесь M.Y обозначают дату истечения контракта:
Si — это фьючерсный контракт на курс доллар США/российский рубль, RTS — фьючерсный контракт на Индекс РТС, выраженный в долларах США. Так как в Индекс РТС входят акции российских компаний, цены на которые выражены в рублях, то колебания курса USD/RUR отражаются также и на колебаниях индекса, выраженного в долларах США.
На графиках этих инструментов видно, что при росте одного актива второй, как правило, падает.
Статья из блога Robot Wealth.
Продолжая мои исследования в области моделирования временных серий, я решил изучить авторегрессивные и условные гетероскедатичные модели. В частности, я взял авторегрессивную модель ARIMA и общую авторегрессивную гетероскедатичную модель GARCH, так как на них часто сылаются в финансовой литературе. Далее следует описание того, что я узнал об этих моделях и основной процесс нахождения их параметров, а также простая торговая стратегия, основанная на предсказаниях полученной модели.
Сначала дадим несколько необходимых определений. Я не хочу воспроизводить всю теорию целиком, ниже дан краткий обзор моделирования временных серий, в частности ARIMA и GARCH моделей:
В первую очередь, вычисление ARIMA и GARCH моделей это способ узнать, при каких прошлых наблюдениях, шуме и дисперсии временной серии возможно предсказать следующее значения этой серии. Такие модели, параметры которых правильно установлены, имеют некоторую предсказательную способность, предполагая, конечно, что эти параметры остаются постоянными на некоторое время для данного процесса.
Доклад «Оптимизация портфеля алгоритмических стратегий»
1. Введение
В чем состоит цель подобной оптимизации? Представим, что у нас есть набор алгоритмов, каждый из которых обладает некоторыми статистическими свойствами, из которых наиболее важными для нас являются доходность и максимальная величина просадки. В основе каждого из алгоритмов лежат разные стратегии, которые, тем не менее, могут быть коррелированы между собой в разной степени, торговля также может вестись на разных инструментах. В качестве примера приведу характеристики стратегий, которые были разработаны нашей командой и применяются в боевых торгах в настоящее время:
Так как свойства каждого из алгоритмов отличаются, возникает проблема: каким образом распределить между ними доступный капитал для того чтобы:
1. Максимизировать доход при заданном уровне риска ( то есть максимальной величине просадки)
2. Минимизировать риск при заданной доходности
Если дать, например равные доли капитала каждому алгоритму, то, очевидно, что такое распределение не будет оптимальным, так как мы не учитываем характеристики, присущие стратегиям. Не будет оптимальным и тот случай, когда мы, например, выделяем капитал пропорционально относительной доходности каждого алгоритма, здесь мы игнорируем значения волатильности, то есть риска, стратегий.
2. Модель Марковица
Задачу оптимизации попробуем решить, применив теорию оптимального портфеля, разработанную Марковицем, точнее некоторые последующие ее модификации. Обычно данная теория применяется для долгосрочного инвестиционного портфеля, состоящего из различных активов, например акций. Кратко суть теории.