Я нахожусь в процессе тестирования на промышленных данных тех моделей, которые я разработал с помощью системы Backtest’а.
В основе системы лежит open-source библиотека Zipline, разработанная стартапом Quantopian, но не поддерживаемая где-то с апреля этого года, когда этот стартап приказал долго жить.
В библиотеке допилена возможность онлайн-закачки данных с источников (финам, mfd, YF), достаточно просто в алгоритме указать, какие тикеры нужны за какой период, и данные будут в нужном виде скачаны и преобразованы. А также допилена возможность работать с минутным таймфреймом.
Поскольку библиотека реализована на Python, то в пайплайн алгоритма можно вставить любые методы обработки и анализа данных, включая библиотеки машинного и глубокого обучения, сразу в одном ноутбуке и скачав данные, и обучив модели, и проведя бэктест алгоритма, что дико удобно.
В принципе, проверена даже техническая возможность повторить портал Quantopian, добавив на какой-либо сайт возможность работы с ноутбуком Zipline, расшаривая (при желании) для других пользователей на форуме либо полный скрипт пользовательского алгоритма, либо его результаты (таблицы и графики).
В предыдущем посте о бэк-тестировании были приведены основные контраргументы против использования тестирования торговых стратегий на исторических данных. Ну, или, по крайней мере, были высказаны весьма скептические мнения.
Я не разделяю этого скепсиса.
Итак, напомню несколько основных тезисов «против»:
Мне, и думаю многим другим, нужны качественные исторические данные за максимальный промежуток времени — для изучения рынка, построения и тестирование торговых систем. Такие данные по фьючерсам, торгуемым на западе, в частности на CME, в свободном доступе (кроме дневок) практически не найти. Несколько месяцев назад я купил исторические данные по следующим фьючерсам CME: ES (фьючерс на индекс S&P), CL (фьючерс на нефть WTI), GC (фьючерс на золото), NQ (фьючерс на индекс NASDQ). Спецификацию по ним вы можете посмотреть тут: http://smart-lab.ru/blog/320021.php
Но осталась потребность в данных по многим другим интересным инструментам. И пару недель назад у меня появилась идея – т.к. исторические данные нужные не только мне, то вполне возможно приобретать их совместно (в складчину) (http://smart-lab.ru/blog/317451.php)
Предыстория:
Мне, и думаю многим другим, нужны качественные исторические данные за максимальный промежуток времени — для изучения рынка, построения и тестирование торговых систем. Такие данные по фьючерсам, торгуемым на западе, в частности на CME, в свободном доступе (кроме дневок) практически не найти. Несколько месяцев назад я купил исторические данные по следующим фьючерсам CME: ES (фьючерс на индекс S&P), CL (фьючерс на нефть WTI), GC (фьючерс на золото), NQ (фьючерс на индекс NASDQ). Спецификацию по ним вы можете посмотреть тут:http://www.cmegroup.com/trading/equity-index/us-index/e-mini-sandp500_contract_specifications.html
Но осталась потребность в данных по многим другим интересным инструментам. И пару недель назад у меня появилась идея – т.к. исторические данные нужные не только мне, то вполне возможно приобретать их совместно (в складчину) (http://smart-lab.ru/blog/317451.php)
Поблагодарить
Можно плюсиками и при желании любой суммой на дальнейшие покупки на:
По поводу «скидывания» на тиковые данные и получения всей истории обращайтесь в личку (у кого не хватает рейтинга пишите комментарий, я вам напишу в личку и она станет доступна). Цена вопроса всего 5000 рублей.
Ранее «скинувшиеся» увидят все данные (и добавленный новый контракт и дальнейшие обновления) по полученной ими ссылке
P.S.
Конструктивные комментарии и вопросы приветствуются.
Флуд, навязывания своего мнения – в топку.