Дневная доходность здесь — около 50%! Причем здесь количество прибыльных сделок — 53%, убыточных (вместе с нулевыми) — 47%, соотношение средней прибыли к среднему убытку — 1.05. То есть, при таком вроде бы незначительном преимуществе в расчете вероятностей результат оказывается очень значительным — эффект большого количества сделок, то есть достаточной статистической выборке даже внутри одного дня.
В данном случае мы не пытаемся что-то предсказывать, а четко определяем вероятности и планируем свои действия в соответствии с их величиной. Проблема здесь в том, что вычислить эти величины довольно сложно, в связи с тем, что присутствует влияние множества факторов, которые должны быть учтены в определении вероятностей
Суть проблемы: ищем алгоритм, с небольшим профит фактором и большим количеством сделок. После написания и тестирования разнообразных подходов, решил вернуться к истокам и обучить модель ML. Фичи взял из старых работ плюс skew из одной из статей Виталия.
Мы сейчас живём в информационном обществе это, с одной стороны, очень хорошо, а с другой — плохо. Да, это некая философская требуха, но в данном случае она тут как всегда к месту. Дело в том, что люди по своей сути несколько инертны. Что я имею введу, спросит меня не просвещенный читатель? В том, что если какой-то очень известный в определенных кругах человек скажет, что эта вещь очень крутая, и вот прям за ней всё будущие, то это не значит то, что нужно везде его совать!
### О юный Quantitative Finance Researcher!