Избранное трейдера MrD

по

2.5 года торговли ботом

Прочитал пост smart-lab.ru/blog/121566.php, жизненно, решил тоже поделиться.
Торгую ботом около 2.5 лет большой пакет стратегий на RI и GZ таймфреймы 5, 15, 60. Бот в виде Quik + самописная программа + MySQL. Поскольку это требует скромных ресурсов, то все отлично работает на виртуальном сервере (покупаю за 400р/мес). Скорости от бота не требуется. Алгоритм отлажен так чтобы не требовать контроля.
Сумма сейчас 3 ляма из них 1.5 честнозаработанных. За первые 1.5 года напилил больше 100%. Затем, где-то в мае прошлого года рынок испортился и эквити ушла в горизонталь. Сейчас есть позывы к нормализации рынка, но лето может все испортить. С другой стороны есть новые данные с рынка и на них уже готовы новые стратегии, которые не плохо работали бы если бы да кабы. Будем посмотреть.
Стратегии непосредственно руками не разрабатываю, использую самописный тестер на исторических данных и генетический алгоритм для поиска стратегий. Оптимизатор выбирает несколько правил из набора доступных, а также подбирает параметры каждого правила. Набор доступных правил кодирую сам по мотивам всяких статей и собственным соображениям. Сигналы на вход и выход есть комбинация правил. Плюс также есть варианты выхода по времени и Stop Loss, параметры эти и еще более другие подбираются алгоритмом. В общем руками стратегии не ковыряю, смотрю только эквити из тестера. Иногда смотрю какие правила и какие парамеры используются. Оптимизирую на старых данных, кусок самых свежих использую для отбраковки переоптимизированных. Естественнос стремлюсь уменшать число параметров, так что в последнее время ограничиваюсь двумя правилами, что дает информационную емкость перебираемого пространства 30-40 бит.


( Читать дальше )

Исследование статистического распределения гэпов

В техническом анализе существует такое понятие как гэп или ценовой разрыв. Гэп возникает, когда предыдущая цена Low оказывается выше последующей цены High, либо с точностью до наоборот – предыдущий High ниже последующего Low. Гэп возможно увидеть, только применяя график отрезков (бары) или японские свечки.
Возникает гэп, в основном, либо на неликвидных инструментах внутри дня, либо в начале новой торговой сессии.

Исследование статистического распределения гэпов
Рис. 1. Пример гэпов
 

( Читать дальше )

Принципы нового синтетического теханализа, особенности и перспективы его применения. Часть 1


 
Если вам покажется, что вы меня поняли, то это значит, что вы поняли меня неправильно
                                                                А. Гринспен

Это краткое

( Читать дальше )

Returns vs Volatility (Attention! The article has the formula!)

Финансовые временные ряды помимо толстых хвостов в распределении доходностей часто демонстрирует так называемый эффект левериджа: когда волатильность возрастает со снижением рынка и, наоборот, снижается, когда рынок растет.
Влияет ли данный эффект на стоимость опционов? Попробуем разобраться.
Для этого, для начала, посчитаем коэффициент корреляции Пирсона для рядов однодневных доходностей и волатильности «на центральном страйке». Будем использовать рыночные данные для фьючерса на индекс РТС и его опционов (3/2010 — 5/2013). Причем будем рассматривать только опционы, до экспирации которых осталось от 45 до 5 календарных дней. Доходности будем получать по формуле: ret[t] = log(S[t]/S[t-1]). Волатильность «на центральном страйке» будем определять как IV0[t] = f(par[t], x=0),  где par[t] — вектор параметров функции f, описывающей рыночную улыбку на конец торгового дня t; x = log(K/S) — «денежность» опциона со страйком K при цене базового актива S.
Т.о. перед нами два ряда ежедневных логарифмических доходностей: ret[t] = log(S[t]/S[t-1]) и rvol[t] = log(IV0[t]/IV0[t-1]).


( Читать дальше )

Модели для ценовых приращений

    • 04 мая 2013, 12:26
    • |
    • Swan
  • Еще
Дисклаймер:  Это большой занудный пост с очень простым и довольно очевидным выводом. Поставил тег «опционы»  - не очень в тему, но всё же.

Модели для ценовых приращений
Простейшая задача (которую кстати, нужно решать чуть-ли не ежедневно) — оценить где и с какой вероятностью будет цена актива через заданное время при сохранении на рынке текущей динамики. Задачка посложнее — какова справедливая цена опциона для текущей динамики?



Решать эти задачи, да и другие, связанные с динамикой рынка очень удобно если известно распределение приращений цен. Но точное распределение приращений разумеется неизвестно — надо использовать какую-то модель.

Какие у нас вообще есть варианты:
* Эмпирическое распределение — для конкретного актива мы вычисляем что было на истории и используем это как модель для будущего.
* Нормальное (Гаусса) распределение (или лог-нормальное).
* Другие непрерывные распределения: Коши, Лапласса, Гамма (на картинке — это оно), Вейбула (в нём аж 3 параметра) и т.д.


( Читать дальше )

Как правильно ощипать черного лебедя


Поступает много жалоб на золото, что якобы оно прилетело 12 апреля черным лебедем. На самом деле все информация о его намерениях есть в рынке. Надо учиться  уметь ее извлекать и строить на ее основе собственные индикаторы. Это поможет правильно  ощипать этого лебедя, т.е.  понять, куда    будет     двигаться актив. Извлечение информации выполняется  с помощью системы пассивной локации рынка на основе

( Читать дальше )

Мутим робота на коленке. Часть "очередная"

На этот раз для фьючерса Si.

Проверим закономерность: Если в час Х цена выше (ниже) чем закрытие прошлой вечерней сессии то покупаем (продаем) и что-нибудь делаем с позицией для достижения успеха.
Получаем: (с 2009 года по сейчас)
Мутим робота на коленке. Часть "очередная"

Мутим робота на коленке. Часть "очередная"

( Читать дальше )

Тестирование опционных стратегий в Excel.

    • 12 апреля 2013, 22:49
    • |
    • jk555
  • Еще
Всем привет! 

  У опционных трейдеров очень часто возникает вопрос, как тестировать опционные стратегии? Попробую описать самый простой способ.
И так. Нам понадобится:
1.Excel (уменя Microsoft Office Excel 2003)
2.Данные с биржи РТС (ftp://ftp.rts.ru/pub/FORTS/volat_coeff/) вфайле ftp://ftp.rts.ru/pub/FORTS/volat_coeff/Volat_description.doc подробно описан формат данных.
3.Конвертор. Необходимо извлечь и обработать нужные нам данные.
Приступим.
Создаем на диске папку option (у меня она будет на диске h:\)
Скачиваем в неё файл ftp://ftp.rts.ru/pub/FORTS/volat_coeff/201303.7z. В нем данные за март 2013 года. Распаковываем архив в эту же папку.
Открываем Excel. Создаем новый файл. Называем лист «1». Сохраняем его как Конвертор.xls. На листе «1» создаем кнопку и называем ее, например, Старт. Кнопка должна исполнить функцию StartSplitTextFile.
В ячейке A1 указываем путь к нужному файлу H:\optiom\201303.csv. В ячейке A2 указываем необходимый нам контракт RTS-3.13. Создаем лист «2» потом он нам пригодится.


( Читать дальше )

Мутим робота на коленке часть 2. "Древнее поверье"

Еще году в 2008 на ленте финама можно было встретить утверждения, что «кукл тянет на хаи» и засадить всех в лонги к открытию европы, чтоб после — «полить сипуху».  Проверим это.

Будем продавать в 1100 мск и закрывать позицию в конце часа. Стоп-лосс не используется, эквити приводится с 2007 года. Инструмент — конечно же фьючерс на индекс РТС, таймфрейм 60мин.

Мутим робота на коленке часть 2. "Древнее поверье"

Получается, идея рабочая. Попробуем немного довести ее до ума.  Стоп-лосс по прежнему не используем. Получаем следующее

( Читать дальше )

....все тэги
UPDONW
Новый дизайн