Избранное трейдера Gregori
Если вам кто нибудь скажет, что на случайном блуждании (СБ) нельзя зарабатывать, бросьте в него камень. Как говорил Паниковский — это жалкие ничтожные люди. На СБ можно зарабатывать с результатами не хуже, чем на реальном рынке. У СБ, по сравнению с реальным рынком, только один недостаток — за игры с СБ никто деньги платить не будет.
А если бы платили? Никто бы ничего не заметил. По прежнему 95% СБ-трейдеров сливало бы депозиты, а 5% регулярно выигрывало и считало бы себя Гуру. По прежнему на графики наносились бы каббалистические знаки и индикаторы, угадывались бы направления движения, каналы, и линии поддержки/сопротивления. Все так же начинающие трейдеры искали Учителя для обучения, а аналитики предсказывали будущее. И, ровным счетом, абсолютно ничего бы не поменялось. Может только АГ заметил бы подвох, но тоже не сразу, а только через несколько месяцев, а, может, и через год-другой. Но, легко сделать, чтобы и АГ остался в неведении.)
Однако, прежде чем играть на СБ, нам необходима стратегия и тестер. Ими мы и займемся.
Для начала стратегия: нам нужны три функции
— одна для пошагового слежения за рыночными котировками и определения момента входа в сделку — DealEntryAnalysis(i) и пусть на ее выходе будет: 0-если сделки нет, 1 — необходим вход в лонг, и -1 — необходим вход в шорт. i — номер отсчета массива котировок.
— вторая для сопровождения сделки лонг — DealControlL(i), отвечающая за контроль и закрытие сделки.
— и третья, для сопровождения сделки шорт — DealControlS(i).
Теперь у нас все готово для разработки тестера стратегий, а это всего лишь цикл while() последовательно перебирающий котировки.
Вот наша стратегия уже в тестере:
while i < Ie: deal_type = DealEntryAnalysis(i) if deal_type == 1: j, rep = DealControlL(i) deals_report.append(rep) i = j+1 continue elif deal_type == -1: j, rep = DealControlS(i) deals_report.append(rep) i = j+1 continue i = i+1
Привет, выражение «чем выше риск, тем выше доходность» внешне выглядит логично, но не находит подтверждения на практике. По акциям США и Европы на длинных горизонтах уже доказано, что акции с наименьшим риском приносят больше доходности, чем высокорискованные даже без поправки на риск. В качестве меры риска принято использовать рыночную бету, но сегодня мы будем тестировать волатильность (стандартное отклонение) дневной доходности, а бету оставим для будущих экспериментов.
За основу мы возьмем работу Нэда Бейкера и Роберта Хогена «Low Risk Stocks Outperform within All Observable Markets of the World» (2012). Авторы просто посчитали волатильность для каждой акции за последние 24 месяца, сформировали по 2 портфеля из 10% акций с наибольшей и наименьшей волой и повторяли это каждый месяц. Да, это академическая работа, но она написана не теоретиками и носит важные практические выводы. Очень рекомендую почитать в оригинале. Вот, что получили авторы по рынкам развитых стран: