Избранное трейдера Сергей Сергаев
Основные принципы увеличения прибыльности алгоритмов автоматизированной торговли изложены в блоге Inovancetech. Представляю здесь перевод этой статьи. В ней использованы некоторые алгоритмы и результаты цикла про машинное обучение (часть 1, часть 2).
После построения алгоритма, вам нужно убедиться, что он робастен и будет генерировать прибыльные сигналы при реальной торговле. В данном посте мы представим 3 легких способа увеличить производительность вашей модели.
Прежде чем улучшать модель, вы должны определить базовую производительность стратегии. Самый лучший способ сделать это — протестировать модель на новых исходных данных. Однако, вы всегда владеете довольно ограниченным набором данных, несмотря на их множество, предоставляемое финансовыми институтами. Значит, вы должны тщательно обдумать, как использовать имеющийся набор. По этим причинам, самое лучшее — разделить его на три отдельных части.
После рассмотрения основ машинного обучения в первой части, мы перейдем к примеру использования наивного байесовского классификатора для предсказания направления движения цены акций Apple. Сначала разберем основные принципы работы наивного байесовского классификатора, затем создадим простой пример использования дня недели для предсказания направления цены закрытия — выше или ниже текущей, а в окончании построим более сложную модель, включающую технические индикаторы.
Что представляет собой наивный байесовский классификатор (НБК)?
НБК старается найти вероятность события А при условии, что событие В уже произошло, обзначаемую как Р(А|B) (вероятность А при условии В).
В нашем случае, мы должны спросить: какова вероятность того, что цена возрастет, при условии, что сегодня — среда? НБК берет во внимание обе вероятности — общую вероятность роста цены, то есть число дней, когда цена закрытия была выше цены открытия относительно всех рассматриваемых дней, и вероятность роста цены при условии, что сегодня среда, то есть сколько прошедших сред имело цену закрытия выше цены открытия?
В последнее время приобретают все большую популярность алгоритмы машинного обучения. Они применяются для решения задачи классификации входных данных, или, проще говоря, выявления паттернов в структуре этих данных. Небольшой цикл статей про машинное обучение опубликован на сайте inovancetech.com, здесь я представляю их перевод.
В этой серии статей мы рассмотрим построение и тестирование простой стратегии машинного обучения. В первой части отметим основные принципы машинного обучения и их применение к финансовым рынкам.
Машинное обучение становится одной из самых многообещающих областей в алгоритмической торговле за последние два года, но имеет репутацию слишком сложного математического подхода. В действительности это не столь трудно в практическом применении.
Цель машинного обучения (МО) в том, чтобы правильно смоделировать исторические данные, и затем использовать эту модель в предсказании будущего. В алгоритмической торговле применяется два типа МО:
Я узнал, что у меня
Есть огромная семья!
Биржа, фьючерс РТС;
Свечки, графики, ТС;
Безубыток, тэйк, стакан;
Кукл, гэп на весь экран...
Опционы, маржин-колл;
Герчик, уровни, прокол!
S&P и РТС;
Блок стат. данных, ФРС;
Клиринг, слив, сложный %
Нефть, но только марки Brent!
Вобщем, всех не перечесть,
Главное — нам в тренд залезть;
И тогда с моей семьёй -
Ярды понесём домой!)))