Избранное трейдера klimvv
Если кто-нибудь здесь читает мой блог (кстати, если кто-то читает, напишит в комментах, плиз), то вы заметили, что у меня был период алго-трейдинга
Вооружившись питоном, библиотеками типа xgboost, я за пару месяцев (которым предшествовали пара лет изучения статистики и ML) написал торговую систему на машинном обучении, которая делала все — скачивала данные из yahoo finance, управляла рисками и сама выставляла заказы моему брокеру через REST-API
Единственное, что система не делала — это она не приносила прибыль. С этим произошел былинный отказ, и я даже знаю, почему. (вроде)
Дело в том, что, забросив на время свою торговую систему, я начал участвовать в соревнованиях по машинному обучению на Kaggle, и только тогда понял, как же мало я знал о прикладном машинном обучении в его современном виде.
Теперь, вооружившись новыми знаниями, а точнее — пониманием того, как это надо правильно делать, я хочу попробовать опять переписать с умом весь алгоритм
Вопрос к участникам смартлаба — где можно подписаться не очень дорого на исторические данные и стрим текущих цен для западных рынков ?
А то яху файненс — это конечно бесплатный и совершенно ненадежный источник информации, хочется что нибудь профессиональное.
спасибо !
Наверное, если кто сможет сгенерировать реальную волу, а значит, в обратную сторону, получить формулу ее расчета, тот получит следующую Нобелевскую премию. А я и не претендую (зачем мне она, «Мы делаем деньги на бирже»). Для начала давайте обсудим и согласуем свойства волатильности. Скачиваем файл.
https://cloud.mail.ru/public/k69C/4k8khnUhR
Что мы обычно делаем. Берем приращения логарифмов, потому что мы знаем, что цена растет по экспоненте. И из этих приращений делаем распределение. И мы допустим, что это распределение может быть нормальным от Гауса. Поэтому мы сразу нагенерим такую последовательность, которую нам выдавала в формуле sigma*W. И которую мы извлекаем из БА.
Сгенерируем нормальное распределение. В прошлый раз мы брали просто случайные числа для волатильности. Для того что бы сделать их числами нормального распределения надо вставить в функцию из эксела, «нормальное обращение» и задать волатильность нормальности и среднее. Смотрите формулу на листе «Нормальное распределение». Среднее мы оставим 0 волу 0,2. Если еще, кто ни будь не видел, то вот оно, о чем тут такие жаркие споры. При каждом пересчете выдаются параметры этого распределения. СКО и оно соответствует заданному 0,2. Эксцесс около 0 и Скос около 0. То есть выдерживаются все параметры Гауса. Ниже график дисперсии. Наши «дельта индикатор» и график волатильности со средней 20, который ходит вокруг 20. Вы можете пересчитывать лист. Распределение посчитано за 200 периодов, так что оно немного гуляет. И это нормально. У нас не так много значений в анализе.
Совсем недавно я написал рецензию на книгу Стива Акелиса “Технический анализ от А до Я”. Вот эта рецензия:
Лучшая книга по техническому анализу
Книга Стива Акелиса хороша, но я бы, скорее всего, не стал о ней писать и не назвал бы ее лучшей, если бы не одна история, которая приключилась со мной в далеком 2015 году. Итак, шел 2015 год, рынок то рос, то падал, и я все больше стал смотреть в сторону относительно коротких инвестиций и даже спекуляций, ибо сильные колебания курса рубля и неустойчивая доходность лишали долгосрочные инвестиции большей части былой привлекательности.
Будучи программистом, я все больше и больше начинал смотреть в сторону технического анализа и различных паттернов. Правда, технический анализ не спешил дарить мне рабочие торговые системы. Что я только не тестировал и какие только параметры не перебирал! Казалось бы, вот она идея, но стоило ее протестировать на истории и меня в очередной раз ожидало сильное разочарование. В некотором роде мне повезло, я знал хотя бы где и куда копать. Еще в самом начале своего торгового пути я понял, что лучшие бумаги, как правило, остаются лучшими, а аутсайдеры, так и остаются аутсайдерами. Т.е. я не тратил время, нервы и деньги на ловлю падающих ножей и на усреднение убыточных позиций. Но как выжать максимум из тех бумаг, что растут и растут хорошо? Как из нескольких десятков лидеров определить ту одну-две бумаги, которые дадут максимальную прибыль?