Избранное трейдера Владимир
В прошлой части мы рассмотрели теоретическую модель, лежащую в основе вычисления вероятности присутствия на рынке информированных трейдеров PIN. Продолжим с эмпирической реализации этой модели.
Для уменьшения пространства параметров модели, обычно предполагают, что частоты прихода ордеров на продажу ϵs и на покупку ϵb равны. В день «хорошей новости» вероятность наблюдения последовательности сделок купли и продажи соответствует:
, где B и S — число сделок купли и продажи соответственно.
В нескольких статьях мы рассмотрим использование индикатора PIN, который представляет собой вероятность присутствия на рынке так называемых информированных трейдеров. Статьи основаны на работе Paolo Zagaglia "PIN: Measuring Asymmetric Information in Financial Markets with R". Так как вероятность информированной торговли зависит от сделок купли и продажи в течение рабочего дня, в данном цикле мы рассмотрим весь процесс, от обработки исходных данных и вычисления вероятности информированной торговли, до определения параметров лежащей в основе математической модели. Примеры будут сопровождаться кодом на языке R.
Рост в последние годы алгоритмической и высокочастотной торговли открыл тот факт, что динамика биржевых цен сильно зависит от микроструктуры рынка. В частности, некоторые трейдеры могут иметь доступ к приватной информации о торгах, в то время как другие довольствуются только публичными новостями. Риск того, то неинформированный трейдер может в какой-то момент времени столкнуться в качестве контрагента в сделке с информированным, является одним из параметров, определяющих цену актива. Таким образом, измерение вероятности того, что контрагент владеет ассиметричной информацией, позволяет правильно вычислить цену.
Так уж сложилось, что из всех видов торговли в трейдинге меня привлекает торговля по потоку ордеров.
Этой теме я посвятил довольно много времени и глубоко её исследовал. Писал свой терминал, собирал сырые данные, анализировал их, исследовал API различных датафидов и терминалов: Rithmic, CQG, Nanex, NYSE API's, NinjaTrader API, Sierrachart API, Takion API и др.
Но помимо сбора данных остро стоит проблема их корректной визуализации. Так вот с этим моментом все обстоит очень плохо. Когда человек говорит «Я читаю ленту» в голове представляется картина с сумасшедшим потоком бегущих цифр перед глазами, успеть рассмотреть и уж тем более как-то проанализировать которые практически невозможно. Большая часть из этого потока просто пролетает мимо. Безусловно с опытом наблюдения что-то начинает получаться, но это в лучшем случае 20-30% обработанной информации из всего потока. А если мы говорим о наблюдении за книгой ордеров (стакан, DOM, Depth of market), то здесь все еще хуже. Большая часть информации при наблюдении за стаканом просто не видна, т.к. частота его обновления в ядре биржи может достигать тысяч событий в секунду, а частота обновления стакана на экране вашего монитора в лучшем случае составит 1 раз в 50 миллисекунд (или 20 раз в секунду). Соответственно между двумя изменениями цифр в стакане на мониторе, могут произойти десятки изменений в реальности.
В данном цикле статей начинаем рассматривать модель Маркова, которая находит применение в задачах классификации состояния рынка и используется во многих биржевых роботах. Статьи основаны на постах, опубликованных в блоге Gekko Quant. Также будет рассмотрены практические алгоритмы на финансовых рынках. Код в цикле приведен на языке R. Вначале будет много теории, ее надо хотя бы попробовать понять, затем разберем практические примеры.
Рабочая среда распознавания основных паттернов.
Рассмотрим набор признаков O, полученный из набора данных d и класс w, обозначающий наиболее подходящий класс для O:
Почему зарабатывающих трейдеров меньше, что мешает быть успешным
1. Терпеть профит труднее, чем лося
Лось когда-нибудь сдохнет от старости, а профит растворится без следа
2. Жадность
5 мин. назад профит был больше, дождусь когда опять будет не меньше
3. Страх
Пора покупать, но всё вокруг ужасно. Дождусь, когда внешний фон улучшится.
4. Отсутствие профитной торговой системы
А если таковая имеется не следование ей
5. Неуверенность
И как следствие пропуск входа в сделку.
6. Вход в сделку без надёжного сигнала , неуменее ждать
Сигнала нет, но поторговать хочется. Глупо пялиться в монитор без дела
7. Чрезмерные плечи
Они самое страшное зло и добро, которые способны бросить вас как в эйфорию, так и в страшное уныние. Причём эти состояния могут меняться очень быстро. Торговля постоянно с большим плечом, как постоянная ставка «на всё» в казино до момента пока не повезёт.