Существует класс алгоритмов, основанных на корелляции цен активов на разных рынках. Для того, чтобы исследовать такие корелляции, например, между американским и российским рынком, необходимо иметь доступ к данным в реальном времени с западных бирж, поставку которых предлагают специальные провайдеры за довольно существенную плату.Однако, есть возможность использования вместо платного датафида парсинг данных real-time с сайта Google Finance. На таких данных высокочастотную стратегию, конечно, не построить, но для более медленных стратегий такой способ вполне подойдет. Впрочем, на высоких частотах сильной корелляции с американцами уже давно нет, и HFT алгоритмы с такой идеей не работают, а вот на длинных промежутках времени есть очень широкое поле для исследований. Как осуществить получение данных с Google Finance рассмотрено в блоге
В прошлой части нами было сделано наблюдение, что для присутствующих на рынке высокочастотных алгоритмов характерна высокая частота отмены биржевых ордеров. В данной статье мы уделим внимание еще одной особенности HFT роботов — малому объему ордеров, генерирумых подобными стратегиями.
Автоматические стратегии стараются отсылать биржевые приказы, которые содержат небольшие количества акций или лотов. Маркет мейкеры делают это для того, чтобы выборочно торговать с небольшими контрагентами, обходя сильные движения, вызываемые крупными покупками или продажами. Исполнительные алгоритмы отсылают небольшие ордера, чтобы скрыть свои намерения о реализации крупных объемов, избегая тем самым сильного воздействия на цену. Чтобы проверить, действительно ли существуют описанные тенденции на рынке, построим график движения цены, с точки зрения пассивной стороны трейда, после взятия всех ордеров на конкретном уровне для двух ситуаций — когда малые ордера принимают участие в данном трейде, и когда их нет. За малый объем ордера примем 2 целых лота и менее:
Неплохую идею для высокочастотного трейдинга подсказал Kipp Rogers в своем блоге. Идея несложная, но требующая подробного объяснения, поэтому попробую изложить ее в двух статьях.
Автор предположил, что лучшее исполнение ордеров, отправленных на биржу, скорее возможно получить, торгуя с трейдерами — людьми, вручную отправляющими приказы, чем с компьютерами, то есть контрагентами с автоматическим выставлением. Высокочастотные роботы отправляют приказы на биржу только в том случае, если они видят возможность быстрого снятия прибыли или ищут наилучшую цену исполнения для больших объемов, что делает соревнование с ними очень тяжелой задачей. С другой стороны, трейдеры, торгующие вручную ( под ними могут подразумеваться и автоматические программы с медленными алгоритмами ), выставляют приказы с большим временем жизни (до отмены или исполнения), меньше внимания уделяют мгновенной цене и, как правило, имеют идею о направлении движения цены при входе в рынок, что также дает представление о поведении их ордеров.
В предыдущей статье мы говорили об эффективных алгоритмах, необходимых для вычисления вероятностей и стат. распределений модели Маркова, которыми являются форвардный алгоритм и алгоритм Витерби. Форвардный алгоритм вычисляет вероятность соответствия данных наблюдения полученным моделью всем возможным последовательностям состояний. Алгоритм Витерби вычисляет вероятность соответствия данных полученной моделью одной, наиболее вероятной, последовательности.
В этом посте будет много формул, но без этого не обойтись, чтобы создать хорошую стратегию, надо разбираться в математической модели, лежащей в ее основе. Следующие части будут более приближенными к практике.
Форвардный алгоритм.
Форвардный алгоритм позволяет эффективно рассчитать функцию вероятности p(O|λ). Форвардной переменной называется вероятность генерации моделью наблюдений до времени t, и состояние j в момент времени t определяется как: