Постов с тегом "машинное обучение": 781

машинное обучение


Нейросеть рекомендует сегодня купить

На Санкт-Петербужской бирже, по мнению нейросети, сейчас актуальны следующие позиции:

OIS, оптимальная цена для покупки — 5.075$. Цель — 5.4713$. Вероятность роста 90.42%
OII, оптимальная цена для покупки — 8.1972$. Цель — 8.7657$. Вероятность роста 90.23%
REGI, оптимальная цена для покупки — 67.502$. Цель — 72.2939$. Вероятность роста 90.23%
AAL, оптимальная цена для покупки — 16.424$. Цель — 17.561$. Вероятность роста 90.07%
M, оптимальная цена для покупки — 10.4988$. Цель — 11.1557$. Вероятность роста 90.07%


Что это такое?

Нейросеть рекомендует сегодня купить

На Санкт-Петербужской бирже, по мнению нейросети, сейчас актуальны следующие позиции:

ETM, оптимальная цена для покупки — 2.0246$. Цель — 2.1574$. Вероятность роста 91.47%
PBF, оптимальная цена для покупки — 7.4394$. Цель — 7.9163$. Вероятность роста 91.47%
OIS, оптимальная цена для покупки — 5.074$. Цель — 5.4599$. Вероятность роста 90.81%
REGI, оптимальная цена для покупки — 64.8516$. Цель — 68.8372$. Вероятность роста 90.81%
CPS, оптимальная цена для покупки — 33.6344$. Цель — 36.1611$. Вероятность роста 90.42%


Что это такое?

Нейросеть рекомендует сегодня купить

На Санкт-Петербужской бирже, по мнению нейросети, сейчас актуальны следующие позиции:

PBF, оптимальная цена для покупки — 8.58$. Цель — 9.1637$. Вероятность роста 90.76%
MAC, оптимальная цена для покупки — 11.48$. Цель — 12.386$. Вероятность роста 90.42%
MTSC, оптимальная цена для покупки — 58.17$. Цель — 61.7962$. Вероятность роста 90.11%
BJRI, оптимальная цена для покупки — 34.017$. Цель — 36.0769$. Вероятность роста 90.07%
CPRI, оптимальная цена для покупки — 39.3774$. Цель — 41.8131$. Вероятность роста 90.07%


Что это такое?

Нейросеть рекомендует сегодня купить

На Санкт-Петербужской бирже, по мнению нейросети, сейчас актуальны следующие позиции:

PBF, оптимальная цена для покупки — 8.5724$. Цель — 9.1733$. Вероятность роста 90.98%
MAC, оптимальная цена для покупки — 11.8104$. Цель — 12.67$. Вероятность роста 90.23%
MTSC, оптимальная цена для покупки — 58.1628$. Цель — 62.7238$. Вероятность роста 90.11%
CPRI, оптимальная цена для покупки — 39.36$. Цель — 42.385$. Вероятность роста 90.07%
ETM, оптимальная цена для покупки — 2.707$. Цель — 2.9068$. Вероятность роста 90.07%


Что это такое?

Нейросеть рекомендует сегодня купить

На Санкт-Петербужской бирже, по мнению нейросети, сейчас актуальны следующие позиции:

FATE, оптимальная цена для покупки — 87.0548$. Цель — 93.6046$. Вероятность роста 90.63%
PBF, оптимальная цена для покупки — 7.895$. Цель — 8.3992$. Вероятность роста 90.63%
RRGB, оптимальная цена для покупки — 20.6102$. Цель — 22.0627$. Вероятность роста 90.63%
OIS, оптимальная цена для покупки — 5.0916$. Цель — 5.4379$. Вероятность роста 90.23%
EDIT, оптимальная цена для покупки — 57.5844$. Цель — 61.5621$. Вероятность роста 90.11%


Что это такое?

Нейросеть рекомендует сегодня купить

На Санкт-Петербужской бирже, по мнению нейросети, сейчас актуальны следующие позиции:

ADS, оптимальная цена для покупки — 76.1636$. Цель — 81.225$. Вероятность роста 90.1%
CPRI, оптимальная цена для покупки — 38.674$. Цель — 41.2984$. Вероятность роста 90.1%
CPS, оптимальная цена для покупки — 39.9704$. Цель — 43.0024$. Вероятность роста 90.1%
DLTH, оптимальная цена для покупки — 11.4432$. Цель — 12.1366$. Вероятность роста 90.1%
DY, оптимальная цена для покупки — 71.5232$. Цель — 77.1947$. Вероятность роста 90.1%


Что это такое?

Нейросеть рекомендует сегодня купить

На Санкт-Петербужской бирже, по мнению нейросети, сейчас актуальны следующие позиции:

FATE, оптимальная цена для покупки — 83.357$. Цель — 89.6961$. Вероятность роста 92.7%
OIS, оптимальная цена для покупки — 5.18$. Цель — 5.5835$. Вероятность роста 91.2%
AA, оптимальная цена для покупки — 22.9$. Цель — 24.5337$. Вероятность роста 90.1%
AAL, оптимальная цена для покупки — 17.16$. Цель — 18.4959$. Вероятность роста 90.1%
ADS, оптимальная цена для покупки — 77.1536$. Цель — 82.3511$. Вероятность роста 90.1%


Что это такое?

Нейросеть рекомендует сегодня купить

На Санкт-Петербужской бирже, по мнению нейросети, сейчас актуальны следующие позиции:

FATE, оптимальная цена для покупки — 79.175$. Цель — 83.9462$. Вероятность роста 93.3%
PBF, оптимальная цена для покупки — 8.0906$. Цель — 8.6661$. Вероятность роста 91.2%
RIG, оптимальная цена для покупки — 2.192$. Цель — 2.3506$. Вероятность роста 90.8%
ATRO, оптимальная цена для покупки — 12.912$. Цель — 13.8079$. Вероятность роста 90.1%
CPS, оптимальная цена для покупки — 39.61$. Цель — 42.1503$. Вероятность роста 90.1%


Что это такое?

Краткое описание методики прогнозирования

Я разработал нейросеть для анализа рынка. Она выбирает акции, обладающие низкой степенью риска и высоким потенциалом роста, с вероятностью более 80%.
Будет публиковаться часть выборки. Так же рассчитывается наилучшая цена покупки и предлагается уровень фиксации прибыли.
Через месяц так же будут публиковаться статистика точности прогнозов.

Кодирование свечей по Лиховидову

Кодирование свечей по Лиховидову.
Параметры большой, средний, маленький берутся по свечам того же времени предшествующих дней.
Может кому пригодится для ML.
А может ошибки найдете или улучшение предложите.

# -*- coding: utf-8 -*-
"""
Читает файл csv в DataFrame. Добавляет колонку с кодом свечи по Лиховидову.
Расчет (большой, средний, маленький) ведется по свечам тогоже времени за предшествующие дни.
Количество предшествующих дней выбирается. Нужно предусмотреть csv файл с большей историей чем start_date на day_delta
"""
import pandas as pd
import numpy as np
from pathlib import Path


class CandleCode:
    def __init__(self, start_date, day_delta, dir_source, file_source):
        self.start_date = start_date
        self.day_delta = day_delta
        self.df = pd.DataFrame()
        self.dir_source = dir_source
        self.file_source = file_source

    def csv_to_df(self):
        """
        Читает файл csv delimiter=';' в DataFrame
        :param dir_source: Папка откуда берем csv файл для обработки
        :param file_source: Исходный файл
        :return:
        """
        self.df = pd.read_csv(f'{self.dir_source}/{self.file_source}', delimiter=';')  # Загружаем файл в DF
        # Меняем индекс и делаем его типом datetime
        self.df = self.df.set_index(pd.to_datetime(self.df['date_time'], format='%Y-%m-%d %H:%M:%S'))
        # Удаляем колонку с датой и временем, т.к. дата и время у нас теперь в индексе
        self.df = self.df.drop('date_time', axis=1)

    def prev_df_to_dic_code(self, previous_df):
        """
        Из DataFrame предшествующего расчетной свече создает словарь с перцентилями для расчета
        (большой, средний, маленький) диапазон тела свечи и его теней.
        :param previous_df: Получает  аргументе DataFrame, с такимже временем свечей, предшествующий расчетной свече
        :return: Возвращяет словарь перцентилей 33% и 66%
        """
        percentile_dic = {}  # Создаем пустой словарь в который будем писать перцентили
        for index, row in previous_df.iterrows():  # Перебираем строки dataframe previous_df
            if row['open'] > row['close']:  # Свеча на понижение
                previous_df.loc[index, 'shadow_high'] = row['high'] - row['open']
                previous_df.loc[index, 'shadow_low'] = row['close'] - row['low']
                previous_df.loc[index, 'candle_body'] = row['open'] - row['close']
            else:  # Свеча на повышение
                previous_df.loc[index, 'shadow_high'] = row['high'] - row['close']
                previous_df.loc[index, 'shadow_low'] = row['open'] - row['low']
                previous_df.loc[index, 'candle_body'] = row['close'] - row['open']

        percentile_dic['shadow_high_33'] = np.percentile(previous_df['shadow_high'], 33)
        percentile_dic['shadow_high_66'] = np.percentile(previous_df['shadow_high'], 66)
        percentile_dic['shadow_low_33'] = np.percentile(previous_df['shadow_low'], 33)
        percentile_dic['shadow_low_66'] = np.percentile(previous_df['shadow_low'], 66)
        percentile_dic['candle_body_33'] = np.percentile(previous_df['candle_body'], 33)
        percentile_dic['candle_body_66'] = np.percentile(previous_df['candle_body'], 66)
        return percentile_dic

    def file_out(self, start, end, df_candle_code):
        """
        Функция записывает результирующий DF в csv файл
        :param start: Для имени выходного файла, начальная дата
        :param end: Для имени выходного файла, конечная дата
        :param df_candle_code: DataFrame который записываем в файл
        :return:
        """
        name_file_out = Path(f'{self.dir_source}/{self.file_source[:-4]}_{start}_{end}_lihovidov.csv')
        df_candle_code.to_csv(name_file_out)

    def run(self):
        df_candle_code = self.df.copy()  # Создаем копию DF, исключение предупреждений
        # Срез DF в котором будет дополнительная колонка с кодами свечей
        df_candle_code = df_candle_code.loc[self.start_date:]
        df_candle_code['candle_code'] = np.nan  # Создание дополнительного столбца и заполнение его NaN
        for index, row in df_candle_code.iterrows():  # Перебираем строки dataframe df_candle_code
            print()
            print(index)
            delta_day = pd.to_timedelta(f'{self.day_delta} days')  # Преобразование типа
            start_previous_df = index.date() - delta_day  # Вычисляем начальную дату DF
            end_previous_df = index.date() - pd.to_timedelta('1 days')  # Вычисляем конечную дату DF
            # Создаем DF предшествующий текущей строке
            previous_df = self.df.loc[start_previous_df.strftime("%Y-%m-%d"): end_previous_df.strftime("%Y-%m-%d")]
            previous_df = previous_df.loc[index.time()]  # Оставляем только строки соответствующие времени тек. строки

            percentile_dic = self.prev_df_to_dic_code(previous_df)  # Получаем словарь перцентилей

            code_str = ''  # Строка в которую будем собирать код для текущей свечи
            # Свеча на понижение (медвежья)
            if row['open'] > row['close']:  # Свеча на понижение (медвежья)
                code_str += '0'
                # Для тела медвежьей свечи
                if row['open'] - row['close'] > percentile_dic[
                    'candle_body_66']:  # 00 - медвежья свеча с телом больших размеров
                    code_str += '00'
                elif row['open'] - row['close'] > percentile_dic[
                    'candle_body_33']:  # 01 - медвежья свеча с телом средних размеров
                    code_str += '01'
                elif row['open'] - row['close'] > 0:  # 10 - медвежья свеча с телом небольших размеров
                    code_str += '10'
                # Для верхней тени медвежьей свечи
                if row['high'] - row['open'] > percentile_dic['shadow_high_66']:  # 11 - верхняя тень больших размеров
                    code_str += '11'
                elif row['high'] - row['open'] > percentile_dic['shadow_high_33']:  # 10 - верхняя тень средних размеров
                    code_str += '10'
                elif row['high'] - row['open'] > 0:  # 01 - верхняя тень небольших размеров
                    code_str += '01'
                else:  # 00 - верхняя тень отсутствует
                    code_str += '00'
                # Для нижней тени медвежьей свечи
                if row['close'] - row['low'] > percentile_dic['shadow_low_66']:  # 00 - нижняя тень больших размеров
                    code_str += '00'
                elif row['close'] - row['low'] > percentile_dic['shadow_low_33']:  # 01 - нижняя тень средних размеров
                    code_str += '01'
                elif row['close'] - row['low'] > 0:  # 10 - нижняя тень небольших размеров
                    code_str += '10'
                else:  # 11 - нижняя тень отсутствует
                    code_str += '11'

            # Свеча на повышение (бычья)
            elif row['open'] < row['close']:  # Свеча на повышение (бычья)
                code_str += '1'
                # Для тела бычьей свечи
                if row['close'] - row['open'] > percentile_dic[
                    'candle_body_66']:  # 11 - бычья свеча с телом больших размеров.
                    code_str += '11'
                elif row['close'] - row['open'] > percentile_dic[
                    'candle_body_33']:  # 10 - бычья свеча с телом средних размеров
                    code_str += '10'
                elif row['close'] - row['open'] > 0:  # 01 - бычья свеча с телом небольших размеров
                    code_str += '01'
                # Для верхней тени бычьей свечи
                if row['high'] - row['close'] > percentile_dic['shadow_high_66']:  # 11 - верхняя тень больших размеров
                    code_str += '11'
                elif row['high'] - row['close'] > percentile_dic[
                    'shadow_high_33']:  # 10 - верхняя тень средних размеров
                    code_str += '10'
                elif row['high'] - row['close'] > 0:  # 01 - верхняя тень небольших размеров
                    code_str += '01'
                else:  # 00 - верхняя тень отсутствует
                    code_str += '00'
                # Для нижней тени бычьей свечи
                if row['open'] - row['low'] > percentile_dic['shadow_low_66']:  # 00 - нижняя тень больших размеров
                    code_str += '00'
                elif row['open'] - row['low'] > percentile_dic['shadow_low_33']:  # 01 - нижняя тень средних размеров
                    code_str += '01'
                elif row['open'] - row['low'] > 0:  # 10 - нижняя тень небольших размеров
                    code_str += '10'
                else:  # 11 - нижняя тень отсутствует
                    code_str += '11'

            # Дожи
            else:  # Дожи
                if row['high'] - row['open'] > row['open'] - row['low']:  # Верхняя тень больше, медвежий дожи
                    code_str += '011'
                else:  # Верхняя тень меньше, бычий дожи
                    code_str += '100'
                    # Для верхней тени дожи
                if row['high'] - row['close'] > percentile_dic['shadow_high_66']:  # 11 - верхняя тень больших размеров
                    code_str += '11'
                elif row['high'] - row['close'] > percentile_dic[
                    'shadow_high_33']:  # 10 - верхняя тень средних размеров
                    code_str += '10'
                elif row['high'] - row['close'] > 0:  # 01 - верхняя тень небольших размеров
                    code_str += '01'
                else:  # 00 - верхняя тень отсутствует
                    code_str += '00'
                # Для нижней тени дожи
                if row['open'] - row['low'] > percentile_dic['shadow_low_66']:  # 00 - нижняя тень больших размеров
                    code_str += '00'
                elif row['open'] - row['low'] > percentile_dic['shadow_low_33']:  # 01 - нижняя тень средних размеров
                    code_str += '01'
                elif row['open'] - row['low'] > 0:  # 10 - нижняя тень небольших размеров
                    code_str += '10'
                else:  # 11 - нижняя тень отсутствует
                    code_str += '11'

            df_candle_code.loc[[index], ['candle_code']] = int(code_str, 2)
            print(int(code_str, 2))

        self.file_out(df_candle_code.index[0].date(), df_candle_code.index[-1].date(), df_candle_code)


if __name__ == '__main__':
    dir_source = 'c:/data_prepare_quote_csv'  # Папка откуда берем csv файл для обработки
    file_source = 'SPFB.RTS_5min.csv'  # Исходный файл
    start_date = '2020-09-01'  # С какой даты будем строить DF с кодами свечей
    day_delta = 365  # Дельта в днях для расчета показателей (большой, средний, маленький). Предшествует start_date

    code = CandleCode(start_date, day_delta, dir_source, file_source)
    code.csv_to_df()
    code.run()

....все тэги
UPDONW
Новый дизайн