Сегодня инвестирование — это не просто выбор активов, это профессиональная диверсификация потенциальных доходов и диверсификация потенциальных рисков. Это умение найти и использовать все возможные инструменты для достижения стабильного роста капитала.
Задумываясь о совершенствовании трейдинговых стратегий, все мы приходим к выводу, что традиционные методы анализа данных становятся ограниченными. Человек способен обнаружить 5–10 закономерностей, иногда до 100, например на стратегии основанной на скользящей средней и цены, но этого недостаточно для работы на сложных и быстрых финансовых рынках.
Нужно больше возможностей для обработки информации, анализа и тестирования, и здесь на помощь приходят Алгоритмические стратегии (АС) и Машинное обучение (МО). За счет использования этих инструментов можно получить более глубокую картину рынка, которая остается нераскрытой полностью при ручном анализе.
Можно заранее понять, есть ли шанс получить прибыль и с какой вероятностью это может произойти, какие шансы получить убыток и какая вероятность его наступления. Тестирование исторических данных дает возможность увидеть потенциальное количество сделок, количество прибыльных и убыточных трейдов, максимальные просадки и, в принципе, результативность системы, в зависимости от настроек.
Искусственный интеллект (ИИ) радикально трансформирует финансовые рынки, отодвигая на второй план традиционные профессии аналитиков, трейдеров и управляющих активами. Алгоритмическая торговля, основанная на ИИ, становится основным инструментом на фондовых биржах, превосходя человеческие возможности в скорости, точности и объеме анализа. Будущее инвестиций — это мир, где алгоритмы управляют капиталом, оставляя все меньше пространства для участия человека.
ИИ действует полностью автономно, исключая субъективные ошибки, эмоциональные реакции и медленные решения, присущие людям. Алгоритмы способны анализировать терабайты данных в режиме реального времени, мгновенно адаптируясь к изменениям рыночных условий. Человеческие аналитики и трейдеры постепенно становятся устаревшими, поскольку ИИ принимает более точные и быстрые решения. Например, фонд Bridgewater Associates, управляемый Рэйем Далио, использует алгоритмы для принятия решений на основе данных, что позволило ему привлечь активы более чем на $120 млрд. Компания активно инвестирует в ИИ, стремясь автоматизировать до 75% своих процессов управления активами.