В этот раз мы протестируем стратегию торговли уровней перекупленности и перепроданности. Разворачивать нас будет индикатор RSI (Индекс относительной силы). Тестировать будем в Quantopian, а код писать на Python.
На повестке дня:
Настало время оптимизации алгоритма «Парного трейдинга». Прошлые наблюдения давали много ложных сигналов. Сократить их помогут скользящие средние. Мы построим z-оценку по спреду цен пары, сглаженному скользящими средними. Бэктестинг будем проводить в Quantopian, а весь код напишем на Python.
Рассмотрим разницу сигналов по z-оценке:
Торговля один раз в день, это хорошо для комиссий. Но не пропускаем ли мы колебания цен, на которых можно заработать? Для проверки уменьшим таймфреймы и увеличим частоту проверки сигналов.
Проверять будем на 15, 30 и 60 минутных периодах. Торговать будем ранее найденными парами. Все проверяем на Quantopian, а код пишем на Python.
Рассмотрим проблемы выбора основы для построения сигнальной линии в стратегии «Парного трейдинга». Есть два возможных варианта: спред цен или спред доходности.
В статье мы рассмотрим, как улучшить результаты автоматического поиска пар для стратегии «Парного трейдинга». А также выясним, как решить проблему, когда пара перестает работать и сразу начинает приносить убытки. Дополнительно, получим полноценный автоматический поиск, чтобы не приходилось отсматривать пары вручную.
Найденные пары проверим на дневной истории. А в следующий раз на часовой.
В этой статье мы проведем тестирование стратегии «Парного трейдинга» на платформе Quantopian. В тестах будут использованы пары, найденные с помощью автоматических алгоритмов, описанных в предыдущих статьях. Код будет написан на Python.
Индикатор ATR (Average True Range) показывает среднюю величину изменения цены внутри дня за указанный период. Отлично подходит для выбора уровней стопов. Также индикатор показывает рост волатильности в активе, когда сохраняет высокие значения.
Работаем на Quantopian (см. сюда), код пишем на Python. Проверяем стратегии:
Индикатор MACD широко известен среди трейдеров. Мне его сигналы помогают находить развороты и предупреждения о коррекциях. Много написано, как использовать его сигналы для открытия позиций, а мы сегодня рассмотрим прикладное применение в алготрейдинге.
Все будет тестироваться на Quantopian (см. сюда), писать код будем на Python. Рассмотрим следующие стратегии:
В этот раз «подкрутим» стратегию «купи и держи» с помощью скользящих средних на основе этой статьи. Там говорится, что при входе выше 200-дневной средней и выходе под ней, мы можем получить аналогичную доходность и сократить просадки. Дополнительно появляется возможность припарковать свободный капитал, например, в банк.
Будет приведено несколько алгоритмов:
В серии следующих постов я расскажу о том, как проводить бэктестинг с помощью Python. Для тестирования торговых стратегий я использую сайт Quantopian. Почему именно его? Потому что он: а) простой и наглядный; б) дает доступ к бесплатным историческим данным; в) имеет богатый функционал.