Избранное трейдера MrD
Я новичок, хочу уйти от дяди, помогите сделать рабочую ТС, для начала хватит Шарпа 1, доходности 15-20% годовых с просадкой не более 10%.
Если ретурн 15-20% и шарп 1, то и волатильность будет 15-20%. А с волатильностью 15-20% надо ожидать просадки 30-40%, а никак не 10%. То есть вы разберитесь, чего вы хотите. Если доходности 20% — готовьтесь к просадке 40% с шарпом-то 1. Если просадки 10% — значит, доходность ожидаемая должна быть 5%, ну пусть 10% от силы. А если вам и то и то — то шарпа надо с такими запросами в районе 3. А такой шарп есть только у ХФТ либо у пары-тройки больших хорошо диверсифицированных фондов (на всей планете).]
Недели две назад обещал ответить нашему коллеге на вопрос и написать на эту тему топик. Отвечаю и пишу.
Итак, нам пришла в голову просто бесподобная и очень простая идея Грааля. Мы имеем всего два индикатора с параметрами х1 и х2 соответственно. Их состояние описывается вектором X = [x1,x2], и в некоторой области Gv подмножества Х и находится наш Грааль, многие сделки в этой области в плюс. По крайней мере, мы так предполагаем, хотя где находится эта область и есть ли она вообще, эта Gv представляем весьма приблизительно, и мы, разумеется, хотели бы это выяснить. Рис.1.
В пространстве состояний X мы ограничили область нашего видения Грааля областью Gv, и в нее даже попал кусок настоящего Грааля G.
Запускаем оптимизацию системы по прибыли, положение и параметры области Gv меняются таким образом, что оптимизатор находит и выделяет настоящий Грааль G областью Gr в пространстве X.
Торговая система готова к употреблению.
В прошлом топике [1] мы разобрались с тем, что и как подавать на входы нейросети (НС). Теперь надо как-то сказать НС — «Горшочек, вари», предварительно рассказав, что конкретно и как именно надо «варить». Мыслей, в общем, нет никаких. Потому, давайте обратимся к классикам — Саймону Хайкину [2,c.33]:
Вот так вот, сразу и на первых страницах — «не могут обеспечить готовые решения», необходимо интегрировать в сложные ситемы", «относительно простые задачи, часть из которых может решаться НС». Книга конечно старая, но и наш MLP (Multilayer perceptron) в составе scikit-learn новизной не отличается. Этому MLP еще и простую, да конкретную задачу подавай, и вокруг него «сложную систему» городи. Как-то энтузиазма поубавилось.
Ладно, коли на вход нашего MLP уже подается временной ряд, пусть он нам определяет, хотя бы приблизительно, моменты входа в Лонг. А мы потом его проверим, и уточним эти моменты.
Теперь нашу НС надо как-то научить находить Лонг — показать НС как правильно и как неправильно. А мы сами-то знаем как правильно? Учителя фиговы. Это с кошечками-собачками хорошо — показывай себе, и пусть учится.
А давайте что-нибудь предположим, назовем какие-то входы в Лонг правильными, а остальные неправильными. Если мы предположили какую-нибудь ерунду, то НС просто ничему разумному не научится, и при дальнейшей проверке это быстро выяснится. А что-то предположить нам поможет интернет.
Кстати, это свойство НС, отличать фантазии от действительных закономерностей, уже вполне можно использовать для проверки каких-либо наших педположений о поведении рынка. Надо только рассказать о них НС, и она скажет, есть там что-то, с чем следует работать, или выкинуть это и забыть.
Однако, обратимся к интернету. Несколько лет назад наш коллега по несчастью занимался методами Машинного обучения (МО) с целью победить рынок. Он строил массу предикторов, подавал их на входы различных систем МО, и обучал по разметке Зиг-Зага. А что, неплохая идея, входы — лучше не придумаешь.
Вообще, если на минимуме Зиг-Зага загородить правую часть графика, как-то сомнительно, что вообще можно что-то сказать о дальнейшем движении. Да, и по ходу пьесы этот минимум будет постоянно перемещаться. Да и наш коллега долго и упорно менял предикторы и системы МО, потом все реже, реже, и вообще пропал из поля зрения. А на истории, конечно, Зиг-Заг — лепота.
Давайте сдвинем точку входа в Лонг немного вправо от минимума Зиг-Зага, где цена уже начала расти. Мы получим некую U-образную кривую цены, на которой НС хотя бы cможет построить линию регрессии. Не говорю, что это хорошая идея, но мы с помощью НС попробуем ее проверить. Что получим? — понятия не имею, я это делаю по ходу написания материала.
Разметку правильных входов для обучения можно сделать по Зиг-Загу, установив какой нибудь разумный порог от его минимума.
А разметку неправильных входов кто сделает? Опять обращаемся к [2,c.60].
ПЕРЕПОДГОНКА ч.2
В предыдущей заметке https://smart-lab.ru/blog/628025.php
я описал пример применения метода Монте-Карло для оценки переподгонки на базе дневных данных по фьючерсу на индекс РТС. Поскольку мало кто понял, о чем я, собственно, веду речь, и зачем это вообще нужно, продолжу.
Весь расчет был сделан для считающегося условно-безопасным случая 3 – х индикаторов (2^3=8 кластеров). Резонный вопрос, а если кластеров больше или меньше, что будет. Для начала провел моделирование для случая 2, 4, 8, 16, 32 кластеров и привел эмпирическую формулу, связывающую результат с числом степеней свободы (число коих на 1 меньше числа кластеров).
Число кластеров |
Степеней свободы |
Средний Шарп |
Приведенный Шарп |
2 |
1 |
0,214 |
0,214 |