Однажды великий гуру трейдинга и знаток анекдотов Александр Михайлович (который Герчик) в одном из своих семинаров рассказал про один случай, когда он пытался алгоритмизировать работу с уровнями и нанял целого математика, чтобы тот разработал мат.аппарат и запрограммировал сигналы для отбоя/пробоя. Целый математик бился над задачей как рыба об лед, но, видимо, математик он был так себе и поэтому задачу решить не смог.
Даже я, на тот момент имеющий в активе три класса церковно-приходской, долго недоумевал, как можно было не решить такую простейшую задачу. Это же легче легкого, думал я: хочешь запрограммировать горизонтальные уровни — тупо вбей в систему справочник круглых чисел, хочешь запрограммировать вершину параболы — пиши регрессию. И так далее.
Потом времена ушли далеко вперед и появился Искусственный Интеллект (ИИ), который легко решает эту задачу, даже без понимания, как оно должно работать.
Собственно, ИИ появился еще лет 50 назад. Но в те давние времена (уже почти былинные), когда и трава была зеленее и небо голубее, компьютерное железо было не способно решать задачи такого уровня. Сегодня ситуация изменилась.
Amazon. Развод Безоса. Суд. Банкротство. Месть Трампа. Вместо ИИ Amazon — украинцы. И конспект книги «Магазин Всего: Джефф Безос и эпоха Amazon»
Ссылка на книгу, аудиосаммари и конспект здесь t.me/kudaidem
Весь 2018 год превозносили Джефа Безоса. Самая дорогая компания! Провидец! Наконец то стал прибыльным.
Только начался 2019 год, как супруги Безос решили развестись. Состояние супруга может уменьшиться в 2 раза.
Физическая реальность существует лишь в форме чистого потенциала.
Если человеческий разум способен материализовать электрон, то теоретически он может материализовать любую вероятность.
Наблюдателю, дана способность силой мысли сгущать квантовое поле и из бессчётного множества субатомных волн вероятности формировать желаемые жизненные события. Правда, для этого требуется осознанное внимание, готовность добросовестно применять новые знания и ежедневно упражняться
Мы — разумная материя. Согласно квантовой модели, физическая Вселенная — это единое нематериальное информационное поле, в котором всё взаимосвязано и которое потенциально является всем, но фактически — ничем. Квантовая Вселенная просто поджидает наделённого сознанием наблюдателя (например, вас или меня), чей разум (который и есть энергия) окажет воздействие на энергию (потенциальную материю), сконцентрировав волны энергетических вероятностей в физическую материю.
Джо Диспенза исследует энергетические аспекты реальности с чисто научной точки зрения и даёт читателю всё, что необходимо для осуществления серьёзных положительных изменений в жизни. Его выводы, подкреплённые данными нейронауки, ставят под сомнение наши представления о человеке и о границах его возможностей. С помощью определённой последовательности медитаций можно сознательно изменить структуру нейронной сети и настроить свой мозг на радость и творчество.Корни прошлых неудач можно свести к одной глобальной ошибке: вы не были готовы жить с полным осознанием истины о том, что наши мысли обладают столь огромной силой, что буквально создают нашу реальность.
Декарт был сторонником механистической модели мира, согласно которой Вселенная подчиняется определённым законам. Анализируя же человеческую мысль, Декарт столкнулся с настоящей проблемой: в работе разума оказалось слишком много переменных, и её нельзя было свести к единым законам. Именно Декарт «виноват» в противопоставлении разума и материи.
Здравствуйте Уважаемые участники форума!
Обращаюсь к Вам за советом по такому вопросу:
Имеется торговая система, построенная с применением нейронных сетей, которая имеет 12 оптимизируемых параметров – вещественных чисел в диапазоне от -1 до 1.
В качестве эксперимента была проведена оптимизация этих параметров на фьючерсе на обыкновенные акции сбербанка на минутках. Количество точек данных для оптимизации -30000 (это примерно 2 месяца). После этого система проверялась на новых данных – 10000 точек.
Результаты оптимизации и проверки представлены на рисунке.
Светло-зеленая кривая – это эквити счета, ниже – график цены.
Зеленые и красные линии – это сделки, просто их очень много и там все сливается.
Собственно сам вопрос: Что будет эффективнее в реальной торговле – переоптимизация параметров раз в день на последних данных за 2 месяца (последние 30000 минутных свечей), или переоптимизация каждый час на последних 3000 минутных свечах, или пероптимизация каждые 5 минут, или еще какой то вариант? То есть интересует оптимальная частота оптимизации и размер обучающего набора данных. Причем наблюдается такая взаимосвязь: чем больше обучающий набор данных, тем меньше средняя доходность системы на обучающем наборе, но тем больше вероятность того что система будет показывать эту доходность на данных которые она не видела. И наоборот, чем меньше обучающий набор, тем больше средняя доходность на обучающем наборе и тем меньше вероятность, что система покажет прибыль на неизвестных данных.