Блог им. AlexeyPetrushin |Ассиметричный Гауссовский Микс с Нулевыми Средними, Распредление Цен

Я нашел то что искал. Распределение а) способное с достаточной точностью аппроксимировать Эмпирическое Распределение цен на диапазонах 180, 360, 720 дней б) имеющее достаточно простую форму в) с возможностью маштабировать.

Ассиметричный Гауссовской Микс из 3х компонент, отдельно для Положительных и Отрицательных изменений, с Фиксированными Нулевыми Средними. Это 8 параметров, но два из них определяются оч точно и требуют мизера данных, поэтому их можно не учитывать, остается 6 параметров, 6 сигм. Это много, но фиттинг будет на десятках лет так что данных достаточно.

Финальная подстройка — сжать/растянуть полученную модель на текущую волатильность, будет по 1-2 параметрам.

На графиках, зеленый положит изменения цен, красный отрицательные. Яркие цвета — эмпирическое, зеленый красный полутон Гауссовский Микс, бирюзовый/розовый полутона — Обобщенное Гиперболическое (добавил чисто для сравнения, оно приближает хуже и непредсказуемо, причем самую важную часть — хвост).

Ассиметричный Гауссовский Микс с Нулевыми Средними, Распредление Цен


( Читать дальше )

Блог им. AlexeyPetrushin |Талеб был прав, Гауссовский Микс работает неплохо

Апроксимация изменений цен Гауссовским Миксом, отдельно для положительных и отрицательных изменений.

Благодарность Михаилу, что поправил алгоритм фиттинга модели для Гауссовского Микса.

Микрософт, 360 дней, зеленая положительные изменения, красная — отрицательные. Слабозеленая/слабокрасная гауссовский микс. Почти невидимая зеленая/красная — обычное гауусовское распредление.

Для каждого случая два графика, графики одинаковы и показывают P(X > x) (комплементарная CDF), но в разных масштабах, логарифмическом и линейном, на одном лучше видна голова на другом хвост.

Талеб был прав, Гауссовский Микс работает неплохо

Микрософт 180 дней



( Читать дальше )

Блог им. AlexeyPetrushin |Не Нормальное Распределение Цен

Продолжаю сравнивать распределения изменения цены, логарифмы, отцентрированые пo среднему, для 360 и 30 дней, отдельно графики положительных изменений (зеленые) и отрицательных (красные). Сравнение с нормальным (полупрозрачные зеленые и красные линии), как видно — не совпадает, и ассиметрия также заметна.

Микрософт, 360 дней

Не Нормальное Распределение Цен
Микрософт, 30 дней



( Читать дальше )

Блог им. AlexeyPetrushin |Сэмплинг инверсией CDF

Увидел сегодня, компактно в двух строчках целая куча концепций.
Сэмплинг инверсией CDF



Блог им. AlexeyPetrushin |Почему дневные изменения цен акций не следуют Распределению Парето?

Я рассчитал распределение изменений цены акций (дифф). Имеются ввиду мультипликативны изменения (diff), во сколько раз меняется цена акции за каждый день, d(t) = p(t) / p(t-1)

Насколько я знаю, распределение должно выглядеть как распределение по Power law (распределение Парето). С CDF, являющейся линией на графике log-log.

Но CDF который я получил не похож на линию на графике log-log. Почему?

Mожет ли это быть вызвано тем, что распределение имеет два хвоста вместо одного? Поскольку имеются два редких событий: редкие огромные ежедневные падения цен с d <0,7 и редкие огромные ежедневные повышения цен d > 1,4

Насколько мне известно, линейный тест распределения парето на логлог графике используется для распределений с одним хвостом. Как например распределение богатства у людей. Можно ли его также использовать для распределения с двумя хвостами?

Пример

Ежедневные цены на 4 акции за пару лет, нормированные на 1 за первый день.

Почему дневные изменения цен акций не следуют Распределению Парето?



( Читать дальше )

....все тэги
UPDONW
Новый дизайн