Избранное трейдера MrD
После написания топика «Quik, DDE, Excel» [1], где была поставлена задача вывода данных доски опционов не непосредственно в Excel, что является очень неудобным для конкретных приложений, а в свой DDE-сервер. Свой DDE-Сервер обладает тем преимуществом, что данные из него можно направлять куда угодно, и как угодно.
С тех пор прошло 3 дня. Черновая болванка программы уже написана, отлажена, работает, и выполняет все возложенные на нее задачи. Как я опрометчиво обещал, проект DDE-Сервера будет предоставлен всем желающим [2](см. список ссылок). Проект выполнен на C++ в среде VS2017. DDE-Сервер на данном этапе выполнен в виде консольного приложения, и все что он делает, это выводит получаемые из Quik по DDE данные на консоль. В принципе, он должен работать с любой таблицей Quik, но делался под вывод доски опционов.
Я этот проект бросаю в таком виде, и уже начинаю на его основе делать приложение для решения своих конкретных задач. На этом наши пути расходятся. Проект поставляется в виде — как есть, и никакие изменения в него мною вносится уже не будут. Теперь это уже ваша задача. Вы можете модифицировать проект под решение ваших конкретных задач.
Тем, кто не читал предыдущий топик этой темы, рекомендую для начала ознакомиться с ним [1].
В комментариях к предыдущему топику меня критиковали за неоптимальность кода Python. Однако, текст читают люди с совершенно разной подготовкой — от почти не знающих Python или знающих другие языки программирования, до продвинутых пользователей. Последние легко могут обнаружить неоптимальность кода и заменить его своим. Тем не менее, код должен быть доступен и новичкам, возможно не обладающим знанием пакетов и продвинутых методов. Поэтому, в коде я буду, по возможности, использовать только базовые конструкции Python, не требующие глубоких знаний, и которые могут легко читаться людьми, программирующими на других языках. Вместе с тем, по мере изложения, без фанатизма, буду вводить и новые элементы Python.
Если вы хотите как-то улучшить или оптимизировать код, приводите его в комментариях — это только расширит и улучшит изложенный материал.
Ну, а сейчас мы займемся разработкой и тестированием индикаторов. Для начала нам нужна простейшая стратегия с использованием МА — его и построим. Самой лучшей по характеристикам МА является ЕМА. Формула ЕМА:
Для моделирование ТС на Python, прежде всего нужен сам Python. Pythonы бывают очень разные.
Самый большой и длинный Python — Anaconda (https://anaconda.org/). Скачать дистрибутив Anaconda можно здесь — Индивидуальное издание -https://www.anaconda.com/products/individual.
Я работаю именно с Anaconda. Установив Anaconda мы получаем сам Python, уже установленные значительную часть нужных и ненужных пакетов с библиотеками Python, и несколько сред разработки. И все это сразу готово к работе, и нам, по большей части, уже не придется дополнительно устанавливать пакеты и среды.
Самый маленький Python последней версии 3.8.2. скачивается с сайта самого Python — https://www.python.org/. Это, практически, только сам язык, компилятор и минимальный набор пакетов. Сделать с ним практически ничего невозможно, и для работы придется постоянно устанавливать нужные пакеты. Среду разработки придется также устанавливать самостоятельно.
Этот Python больше подходит для запуска и работы с уже отлаженными законченными программами.
self.conn = websocket.WebSocketApp( self.url, on_open=self._on_open, on_message=self._on_message, on_error=self._on_error, on_close=self._on_close )пакет больше не экспортирует класс WebSocketApp, документацию вменяемую найти сразу не получилось и поэтому возникла потребность заменить websocket на что-то более актуальное. И это актуальное нашлось: websockets.readthedocs.io/en/stable/intro.html
Начинающие (да и не только) инвесторы часто задаются вопросом о том, как отобрать для себя идеальное соотношение активов входящих в портфель. Часто (или не очень, но знаю про двух точно) у некоторых брокеров эту функцию выполняет торговый робот. Но заложенные в них алгоритмы не раскрываются.
В этом посте будет рассмотрено то, как оптимизировать портфель при помощи Python и симуляции Монте Карло. Под оптимизацией портфеля понимается такое соотношение весов, которое будет удовлетворять одному из условий:
Для расчета возьмем девять акций, которые рекомендовал торговый робот одного из брокеров на начало января 2020 года и так же он устанавливал по ним оптимальные веса в портфеле: 'ATVI','BA','CNP','CMA', 'STZ','GPN','MPC','NEM' и 'PKI'. Для анализа будет взяты данные по акциям за последние три года.
#Загружаем библиотеки import pandas as pd import yfinance as yf import numpy as np import matplotlib.pyplot as plt # Получаем данные по акциям ticker = ['ATVI','BA','CNP','CMA', 'STZ','GPN','MPC','NEM', 'PKI'] stock = yf.download(ticker,'2017-01-01', '2019-01-31')