Я нахожусь в процессе тестирования на промышленных данных тех моделей, которые я разработал с помощью системы Backtest’а.
В основе системы лежит open-source библиотека Zipline, разработанная стартапом Quantopian, но не поддерживаемая где-то с апреля этого года, когда этот стартап приказал долго жить.
В библиотеке допилена возможность онлайн-закачки данных с источников (финам, mfd, YF), достаточно просто в алгоритме указать, какие тикеры нужны за какой период, и данные будут в нужном виде скачаны и преобразованы. А также допилена возможность работать с минутным таймфреймом.
Поскольку библиотека реализована на Python, то в пайплайн алгоритма можно вставить любые методы обработки и анализа данных, включая библиотеки машинного и глубокого обучения, сразу в одном ноутбуке и скачав данные, и обучив модели, и проведя бэктест алгоритма, что дико удобно.
В принципе, проверена даже техническая возможность повторить портал Quantopian, добавив на какой-либо сайт возможность работы с ноутбуком Zipline, расшаривая (при желании) для других пользователей на форуме либо полный скрипт пользовательского алгоритма, либо его результаты (таблицы и графики).
Надеюсь получить интересные идеи и конструктивную критику от участников на мои попытки подобрать алгоритмы возврата к среднему (Mean reversion).
Вкратце, что я знаю о системах возврата к среднему: системы, построенные на одном инструменте, являются контр-трендовыми, потому что тренд отклоняет график от средней, а заходить в сторону к средней, значит заходить против тренда. В этом же заложен главный риск таких систем – длинный тренд приводит к долгой и большой просадке. Другая вариация систем возврата к среднему – арбитраж, когда вместо одного инструмента рассматриваются два и более. В этом случае под «средней» понимается некий синтетический курс, зависящий от курсов рассматриваемых инструментов. Расхождение какого-либо из инструментов от этого синтетического курса возможно в случае нарушения глобальной корреляции, что бывает не часто, но пренебрегать таким риском нельзя.
Примером таких систем могут быть парный арбитраж на коррелируемых инструментах, календарный арбитраж, треугольники кросс-курсов валют форекса, или арбитраж бумаг, входящих в индекс, против самого индекса.
Начнем с традиционной таблицы
Несмотря на ряд гэпов вниз после ростов накануне, например 1 и 21 октября, октябрь удалось закончить в неплохом плюсе в первую очередь за счет RI-тренд и GAZP. Напомню, что гэпом для меня является изменение цены с конца основной сессии накануне до 10:00МСК следующего дня. В отличие от сентября, RI-контртренд получил серьезную «пробоину» 5.10, смог выйти в плюс к 26.10, но в плюсовой зоне не удержался и закончил месяц в символическом минусе. Ну, а аутсайдером моей торговли-2021 является Si, закончивший очередной месяц в минусе.
Отметим, что в октябре мой счет обошел индекс Мосбиржи по доходности с начала года, хотя в третьей декаде октября устроил с индексом Мосбиржи игру «в кошки мышки»