Самоизоляция и мои достижения❗️
Я уже писал, что самоизоляция — это прекрасный повод научиться чему-то новому. В своем посте «Чем я занимаюсь на самоизоляции❓», я достаточно подробно описал как реанимировал кое-какие свои старые компьютеры и ноуты, как я установил на них Linux Mint (с которого сейчас пишу настоящий пост), и как решил начать изучать Python, потому что у меня дома нет Matlab, а мне захотелось провести несколькорасчётов и исследований по измерению волатильности по метрике JPMorgan.
Сейчас я хочу поделиться результатами за чуть больше чем неделю. Я не каждый день занимаюсь изучением, поскольку на неделе ездил на работу, а дома, как всегда есть куча отвлекающих факторов и самым важным из них, конечно, являются дети. Но этот фактор я воспринимаю исключительно положительно 👍 Если суммировать все время которая я потратил на на ткущий момент по изучению питона, то получится около 20 часов.
По мотивам поста https://smart-lab.ru/blog/616708.php
Вот и мой велосипед на питоне для получения котировок с Мосбиржи
from urllib import request, error from json import loads import pprint class GetRawDataException(Exception): pass class GetPricesException(Exception): pass def get_prices(start_date: str, end_date: str, ticker: str) -> dict: """ Возвращает словарь: {дата:цена закрытия} """ req = 'https://iss.moex.com/iss/history/engines/stock/markets/shares/boards/TQBR/securities/{}.json?from={}&till={}'.format(ticker, start_date, end_date) contents = get_raw_data(req) try: data = loads(contents) prices = {x[1] : x[11] for x in data['history']['data']} return(prices) except Exception as err: raise GetPricesException(err) def get_raw_data(req: str) -> str: """ Возвращает результат запроса к серверу Мосбиржи """ try: contents = request.urlopen(req).read() return(contents) except URLError as err: raise GetRawDataException(err) try: prices = get_prices('2019-05-23', '2019-05-30', 'GAZP') pprint.pprint(prices) except GetRawDataException as err: print('Error getting raw data: ', str(err)) except GetPricesException as err: print('Error parsing json: ', str(err))
Вывод данных происходит с помощью функции get_prices(). Механизм простой: формируется url для GET-запроса. Мосбиржа в ответ присылает json, из которого забираются нужные данные и выводятся на экран.
Есть и другие способы получения данных: yfinance, pandas-datareader и универсальный BeautifulSoup, ещё более универсальный Selenium. Но это уже совсем другая история...
self.conn = websocket.WebSocketApp( self.url, on_open=self._on_open, on_message=self._on_message, on_error=self._on_error, on_close=self._on_close )пакет больше не экспортирует класс WebSocketApp, документацию вменяемую найти сразу не получилось и поэтому возникла потребность заменить websocket на что-то более актуальное. И это актуальное нашлось: websockets.readthedocs.io/en/stable/intro.html
Начинающие (да и не только) инвесторы часто задаются вопросом о том, как отобрать для себя идеальное соотношение активов входящих в портфель. Часто (или не очень, но знаю про двух точно) у некоторых брокеров эту функцию выполняет торговый робот. Но заложенные в них алгоритмы не раскрываются.
В этом посте будет рассмотрено то, как оптимизировать портфель при помощи Python и симуляции Монте Карло. Под оптимизацией портфеля понимается такое соотношение весов, которое будет удовлетворять одному из условий:
Для расчета возьмем девять акций, которые рекомендовал торговый робот одного из брокеров на начало января 2020 года и так же он устанавливал по ним оптимальные веса в портфеле: 'ATVI','BA','CNP','CMA', 'STZ','GPN','MPC','NEM' и 'PKI'. Для анализа будет взяты данные по акциям за последние три года.
#Загружаем библиотеки import pandas as pd import yfinance as yf import numpy as np import matplotlib.pyplot as plt # Получаем данные по акциям ticker = ['ATVI','BA','CNP','CMA', 'STZ','GPN','MPC','NEM', 'PKI'] stock = yf.download(ticker,'2017-01-01', '2019-01-31')
import requests import datetime import pathlib SECIDs = ["GAZP", "BANEP", "LKOH"] DISK = "E" for SECID in SECIDs: from_date = "2020-05-04" to_date = "2005-01-03" while str(to_date) != from_date: to_date = str(to_date) to_date = to_date.split('-') a = datetime.date(int(to_date[0]), int(to_date[1]), int(to_date[2])) b = datetime.timedelta(days=140) to_date = a + b pathlib.Path("{}:/{}/{}".format(DISK, "Database_MOEX", SECID)).mkdir(parents=True, exist_ok=True) filename = SECID + "_" + str(to_date) + ".csv" with requests.get("http://iss.moex.com/iss/history/engines/stock/markets/shares/boards/tqbr/securities/{}.csv?date={}".format(SECID, to_date)) as response: with open("{}:/Database_MOEX/{}/{}".format(DISK, SECID, filename), 'wb') as f: for chunk in response.iter_content(): f.write(chunk)Для начала пройдемся по его плюсам и минусам. Самый главный минус, что этот парсер качает только определенный период, который уникален для каждой акции, судя по всему для увеличения этого периода надо кинуть бирже на лапу:), и то что информация предоставляется за день, теперь перейдем к плюсам: можно выкачивать историю за определенный период для нескольких инструментов сразу (их количество ограничивается лишь количеством инструментов на мосбиржи), есть возможность назначать диск для сохранения информации, быстрота выгрузки данных.
Друзья, хочу рассказать о том, чем мне удалось заняться в режиме самоизоляции.
Надо сказать, что я не сижу безвылазно дома, и поскольку явлюсь управляющим партнёром Инвестиционного партнёрства ABTRUST, а с юридической точки зрения – лицом, имеющим право действовать без доверенности от юридического лица – в «простонародии» Генеральным директором, то я все равно периодически езжу на работу в офис. Конечно, у меня есть QR-пропуск и я подавал разные списки на mos.ru. Но как говорится – «Береженного Бог бережет», поэтому я стараюсь минимизировать свои передвижения и принимаю все возможные меры предосторожности, несмотря на сомнительность их эффективности.
Как и у многих, кто работает в сфере управления инвестициями, я несильно привязан к месту своей работы. Просто у меня в офисе прекрасно оборудовано рабочие место, установлена масса полезных программ, таких как Matlab, и там же находится вся моя инвестиционная библиотека. Перевезти всё это домой не представляется возможным, да к тому же дети всё равно не дадут полноценно всем этим пользоваться. Но работать надо, и желательно минимизировать все возможные издержки.
После всех вычислений, приведенных в этой и этой публикациях, можно углубиться в статистический анализ и рассмотреть метод наименьших квадратов. Для этой цели используется библиотека statsmodels, которая позволяет пользователям исследовать данные, оценивать статистические модели и выполнять статистические тесты. За основу были взяты эта статья и эта статья. Само описание используемой функции на английском доступно по следующей ссылке.
Сначала немного теории:
О линейной регрессии
Линейная регрессия используется в качестве прогнозирующей модели, когда предполагается линейная зависимость между зависимой переменной (переменная, которую мы пытаемся предсказать) и независимой переменной (переменная и/или переменные, используемые для предсказания).
Я уже писал, что у меня сделана C++ DLL, которая получает данные из Lua и пишет их в БД SQLite. Уже писал также, что DLL под Lua делается на раз, и даже приводил коды и шаблон проекта простенькой C++ DLL. Посмотрело несколько тысяч, скачало, аж 12 человек, применят от силы двое. КПД постов, прямо скажем, оч низкий.)
В DLL реализована как связь с Lua, и будет реализована сама стратегия, вот только не решил какая из них. Повторять старые стратегии на новой для меня платформе Quik уже неинтересно, а новых моделей АТС отработано уже несколько. Все моделируется в Python. Часть стратегий не требует сложной математики, и могут быть легко перенесены непосредственно на С++. Другие непосредственно в DLL перенесены быть не могут, т.к. используют пакеты Python — всяческие регрессии и машинное обучение.
В общем, получилось, что DLL является шаблоном для любой стратегии. Все необходимые для АТС данные доступны АТС — реал-тайм данные поступают в DLL непосредственно из терминала, а необходимая история пишется DLL в БД SQLite и читается АТС из базы данных.